+0  
 
+1
141
3
avatar

Find the smallest possible value of (n^2 + 3n + 19)^2, if n is an integer.

 Nov 22, 2019

Best Answer 

 #3
avatar
+2

Find the smallest possible value of (n^2 + 3n + 19)^2, if n is an integer.

 

Suchen Sie den kleinstmöglichen Wert von (n ^ 2 + 3n + 19) ^ 2, wenn n eine ganze Zahl ist.

 

Hello Guest!

 

\(f(n)=(n^2 + 3n + 19)^2\\ f'(n)=2(n^2 + 3n + 19)(2n+3)=0\\ 2n+3=0\\ n_1=-1.5\\ f(-1)=\color{blue}289\\ f(-1.5=280.5625\ minimum\\ f(-2)=\color{blue}289\)

 

\(n^2+3n+19=0\\ n=-\frac{p}{2}\pm \sqrt{(\frac{p}{2})^2-q}\\ n=-\frac{3}{2}\pm \sqrt{2.25-19}\\ n_{2,3}\ are\ complex\ numbers.\)

 

\(The\ smallest\ value\ of\ f(n)\ is\ 289\ |n\in \mathbb{Z}.\)

laugh  ! 

asinus

 Nov 23, 2019
edited by asinus  Nov 23, 2019
edited by asinus  Nov 23, 2019
 #1
avatar+2847 
0

you do \(\frac{-b}{2a}\).

 

Then plug in and solve

 Nov 23, 2019
 #2
avatar+2847 
0

me so sorry robotics team is coming to my house frown i have no time

CalculatorUser  Nov 23, 2019
 #3
avatar
+2
Best Answer

Find the smallest possible value of (n^2 + 3n + 19)^2, if n is an integer.

 

Suchen Sie den kleinstmöglichen Wert von (n ^ 2 + 3n + 19) ^ 2, wenn n eine ganze Zahl ist.

 

Hello Guest!

 

\(f(n)=(n^2 + 3n + 19)^2\\ f'(n)=2(n^2 + 3n + 19)(2n+3)=0\\ 2n+3=0\\ n_1=-1.5\\ f(-1)=\color{blue}289\\ f(-1.5=280.5625\ minimum\\ f(-2)=\color{blue}289\)

 

\(n^2+3n+19=0\\ n=-\frac{p}{2}\pm \sqrt{(\frac{p}{2})^2-q}\\ n=-\frac{3}{2}\pm \sqrt{2.25-19}\\ n_{2,3}\ are\ complex\ numbers.\)

 

\(The\ smallest\ value\ of\ f(n)\ is\ 289\ |n\in \mathbb{Z}.\)

laugh  ! 

asinus

Guest Nov 23, 2019
edited by asinus  Nov 23, 2019
edited by asinus  Nov 23, 2019

14 Online Users

avatar
avatar