We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
53
3
avatar

Find the smallest possible value of (n^2 + 3n + 19)^2, if n is an integer.

 Nov 22, 2019

Best Answer 

 #3
avatar
+2

Find the smallest possible value of (n^2 + 3n + 19)^2, if n is an integer.

 

Suchen Sie den kleinstmöglichen Wert von (n ^ 2 + 3n + 19) ^ 2, wenn n eine ganze Zahl ist.

 

Hello Guest!

 

\(f(n)=(n^2 + 3n + 19)^2\\ f'(n)=2(n^2 + 3n + 19)(2n+3)=0\\ 2n+3=0\\ n_1=-1.5\\ f(-1)=\color{blue}289\\ f(-1.5=280.5625\ minimum\\ f(-2)=\color{blue}289\)

 

\(n^2+3n+19=0\\ n=-\frac{p}{2}\pm \sqrt{(\frac{p}{2})^2-q}\\ n=-\frac{3}{2}\pm \sqrt{2.25-19}\\ n_{2,3}\ are\ complex\ numbers.\)

 

\(The\ smallest\ value\ of\ f(n)\ is\ 289\ |n\in \mathbb{Z}.\)

laugh  ! 

asinus

 Nov 23, 2019
edited by asinus  Nov 23, 2019
edited by asinus  Nov 23, 2019
 #1
avatar+2505 
0

you do \(\frac{-b}{2a}\).

 

Then plug in and solve

 Nov 23, 2019
 #2
avatar+2505 
0

me so sorry robotics team is coming to my house frown i have no time

CalculatorUser  Nov 23, 2019
 #3
avatar
+2
Best Answer

Find the smallest possible value of (n^2 + 3n + 19)^2, if n is an integer.

 

Suchen Sie den kleinstmöglichen Wert von (n ^ 2 + 3n + 19) ^ 2, wenn n eine ganze Zahl ist.

 

Hello Guest!

 

\(f(n)=(n^2 + 3n + 19)^2\\ f'(n)=2(n^2 + 3n + 19)(2n+3)=0\\ 2n+3=0\\ n_1=-1.5\\ f(-1)=\color{blue}289\\ f(-1.5=280.5625\ minimum\\ f(-2)=\color{blue}289\)

 

\(n^2+3n+19=0\\ n=-\frac{p}{2}\pm \sqrt{(\frac{p}{2})^2-q}\\ n=-\frac{3}{2}\pm \sqrt{2.25-19}\\ n_{2,3}\ are\ complex\ numbers.\)

 

\(The\ smallest\ value\ of\ f(n)\ is\ 289\ |n\in \mathbb{Z}.\)

laugh  ! 

asinus

Guest Nov 23, 2019
edited by asinus  Nov 23, 2019
edited by asinus  Nov 23, 2019

17 Online Users