+0  
 
0
451
2
avatar

Given a hexagon $ABCDEF$ inscribed in a circle with $AB = BC, CD = DE, EF = FA$, show that $\overline{AD}, \overline{BE}$, and $\overline{CF}$ are concurrent. [asy] unitsize(2 cm); pair A, B, C, D, E, F, G; A = dir(85); B = dir(45); C = dir(5); D = dir(-55); E = dir(-115); F = dir(-195); draw(unitcircle); draw(A--B--C--D--E--F--A); draw(A--D); draw(B--E); draw(C--F); label("$A$", A, A); label("$B$", B, NE); label("$C$", C, NE); label("$D$", D, SE); label("$E$", E, SW); label("$F$", F, NW); [/asy]

 Sep 2, 2019
 #1
avatar+2856 
+1

Post the pic please, i think you posted the code of the picture not the real picture

 Sep 2, 2019
 #2
avatar+4593 
0

Yeah, post the image properly, please. Just posting the asymptote in the question box won't show up.

 Sep 2, 2019

8 Online Users

avatar