We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
232
2
avatar

Given a hexagon $ABCDEF$ inscribed in a circle with $AB = BC, CD = DE, EF = FA$, show that $\overline{AD}, \overline{BE}$, and $\overline{CF}$ are concurrent. [asy] unitsize(2 cm); pair A, B, C, D, E, F, G; A = dir(85); B = dir(45); C = dir(5); D = dir(-55); E = dir(-115); F = dir(-195); draw(unitcircle); draw(A--B--C--D--E--F--A); draw(A--D); draw(B--E); draw(C--F); label("$A$", A, A); label("$B$", B, NE); label("$C$", C, NE); label("$D$", D, SE); label("$E$", E, SW); label("$F$", F, NW); [/asy]

 Sep 2, 2019
 #1
avatar+2417 
+1

Post the pic please, i think you posted the code of the picture not the real picture

 Sep 2, 2019
 #2
avatar+4325 
0

Yeah, post the image properly, please. Just posting the asymptote in the question box won't show up.

 Sep 2, 2019

25 Online Users

avatar