We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
39
1
avatar

The figure below shows a trapezium ABCD, where AB : DC = 2 : 3 is the mid-point of AB. Straight lines DE and DB meet AC at F and G respectively. Find the radio of AF : FG : GC.

 

 Nov 12, 2019
 #1
avatar+105411 
+1

Probably  a way better "geometric" way to do this

 

Let

A = (3,4)

B = (7,4)

C = (6,0)

D = (0,0)

E = (5,4)

 

The equation of the line containing DE  is   y = (4/5)x   (1) 

The equation of the line contining DB  is  y = (4/7)x      (2)

The slope of the line containing AC  is [ 4 - 0] / [ 3 - 6 ]  =  -4/3

And the equation of this line is  y = (-4/3)(x - 6)  = (-4/3)x + 8   (3)

 

The intersection of (1)  and (3)  will give the x coordnate  of F

So

(4/5)x  = (-4/3)x + 8

(4/5)x + (4/3)x  = 8

 ([ 12 + 20] / 15)x  = 8

([ 32] / 15 )x =   8

x = 15 * 8  / 32

x = 15/4  = 3.75

And y  = (4/5) (15/4)  = 3

So  F = ( 3.75, 3)

 

And the intersection of (2) and (3) will give the x coordinate of G

So

(4/7)x  = (-4/3)x + 8

(4/7)x + (4/3)x  = 8

([ 12 + 28]  / 12) x  = 8

( [ 40 ]/ 21) x  = 8

x =  8 * 21 / 40

x =  21/ 5  =  4.2

And y = (4/7)(21/5)  = (4/5)* 3  = 12/5  = 2.4

So  G  = ( 4.2, 2.4)

 

And AF =  √[(3 - 3.75)^2  + ( 4- 3)^2 ] =  √[.75^2 + 1] =  1.25

And FG  = √[ (3.75- 4.2)^2 + ( 3 - 2.4)^2 ]=  √[[.45^2 + .6^2] = √.5625  = .75

And GC = √[(4.2 - 6)^2  + 2.4^2 ]  = √ [ 1.8^2 + 2.4^2 ] = √9  = 3

 

So

 

AF : FG : GC  =

 

1.25  : .75 :  3   =

 

5 (.25) : 3 (.25) :  12 (.25)  =

 

5   :  3     :   12

 

 

 

 

cool cool cool

 Nov 13, 2019

7 Online Users

avatar
avatar