We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
65
1
avatar

Find the distance between the vertices of the hyperbola \(9x^2 + 54x - y^2 + 10y + 55 = 0.\)

 Apr 9, 2019

Best Answer 

 #1
avatar+5172 
+2

\(9x^2 +54x - (y^2 - 10y)+55 = \\ 9(x^2 + 6x +9 - 9)-(y^2-10y +25-25) + 55=\\ 9(x+3)^2 - 81 - (y-5)^2 +25 + 55 = \\ 9(x+3)^2 - (y-5)^2 = 1\\ \dfrac{(x+3)^2}{\left(\frac 1 3\right)^2} - (y-5)^2 = 1\)

 

\(\text{The vertices are at }\\ (x,y)=(-3\pm \dfrac 1 3 ,5)=\left (-\dfrac{10}{3},5\right),~\left(-\dfrac{8}{3},5\right)\\ \text{and thus they are }\dfrac 2 3 \text{ units apart}\)

.
 Apr 9, 2019
 #1
avatar+5172 
+2
Best Answer

\(9x^2 +54x - (y^2 - 10y)+55 = \\ 9(x^2 + 6x +9 - 9)-(y^2-10y +25-25) + 55=\\ 9(x+3)^2 - 81 - (y-5)^2 +25 + 55 = \\ 9(x+3)^2 - (y-5)^2 = 1\\ \dfrac{(x+3)^2}{\left(\frac 1 3\right)^2} - (y-5)^2 = 1\)

 

\(\text{The vertices are at }\\ (x,y)=(-3\pm \dfrac 1 3 ,5)=\left (-\dfrac{10}{3},5\right),~\left(-\dfrac{8}{3},5\right)\\ \text{and thus they are }\dfrac 2 3 \text{ units apart}\)

Rom Apr 9, 2019

10 Online Users

avatar