We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Help

+3
260
2

Solve and find the domain of the equation:

$$\log _3 (4 \cdot 3^{x-1}-1)=2x-1$$

Feb 12, 2018

### 1+0 Answers

#2
+1

log3 (4*3x- 1  - 1)   = 2x - 1   write this in exponential form

3^(2x - 1)  =  4*3^(x - 1) - 1

3^(2x) / 3  =  4*3^x / 3  - 3/3       multiply through by 3

3^(2x)  = 4*3^x  -  3

(3^2)^x  = 4*3^x - 3

(3^x)^2  = 4*(3^x)  -  3

Let  a  =  3^x

a^2  =  4a  - 3

a^2  - 4a + 3   =  0       factor

(a - 3)  (a - 1)  =  0

Set  each factor to 0  and solve for a and we get that

a  =  3    or    a  =1        which means that

1 =  3^x    ⇒  x = 0      or  that

3  =  3^x   ⇒   x  =  1

Both solutions solve the original equation

I'm sorry...but I don'tknow what "domain of the equation"  means....unless we require that

4*3^(x - 1)  -  1  >  0    if so.....then

4*3^(x - 1)  .  1

3^(x - 1)  > 1/4     take the log of both sides

(x - 1) log(3)  > log (1/4)

log (3) *  (x)  >  log (1/4) + log (3)

x > [ log (1/4) + log (3) ] / log (3)

x >  log (3/4) / log(3)

x > ≈  -0.262  ⇒    this is the domain   Feb 13, 2018
edited by CPhill  Feb 13, 2018
edited by CPhill  Feb 13, 2018