+0  
 
0
223
4
avatar+3171 

For positive integer values of \(N\), let \(\boxed N\)  be defined as \(\begin{align*} &\boxed N=2+4+6+\ldots+N\text{, if }N\text{ is even and}\\ &\boxed N=1+3+5+\ldots+N\text{, if }N\text{ is odd.} \end{align*}\) What is the value of \(\boxed{2009}-\boxed{2008}\)?

tertre  Feb 6, 2018
 #1
avatar
+1

N=[L - F] / D + 1

N=1,004 for EVEN terms

N =1,005 for ODD terms

Sum =[F + L] / 2 x N

Sum =1,009,020 sum of EVEN terms

Sum =1,010,025 sum of ODD terms

1,010,025 - 1,009,020 = 1,005

Guest Feb 6, 2018
 #2
avatar+89781 
+1

Note that the sum   of

 

2 + 4 + 6 +....+ N         can  be written as  (N + 2) * (N /4) 

 

And the sum of  

 

1 + 3  + 5 +  ....+ N     can be written as  [ (N + 1)/2]^2  =  (N + 1)^2 / 4  =

 

So  we have 

 

[ 2009 + 1 ] ^2 / 4      -  [2008 + 2] [2008] / 4 =

 

 

[2010]^2 / 4   -   [ 2010] *[ 2008] / 4  =

 

[2010] / 4  * [ 2010  - 2008]  =

 

[ 2010 ]/ 4  *  2  =

 

1005

 

 

 

cool cool cool

CPhill  Feb 6, 2018
 #3
avatar+2248 
+1

Cphill and Guest have providing their individual ways of thinking about it. I think I will, too!

 

\(\boxed{2009}=\hspace{5mm}1+3+5+...+2003+2005+2007+2009\\ \boxed{2008}=\underline{-(2+4+6+...+2004+2006+2008)}\\ \hspace{19mm}\underbrace{-1-1-1-...-1-1-1}\hspace{21mm}+2009\\ \hspace{33mm}\text{1004 times}\)

 

Therefore, we have concluded that the complicated expression has been reduced to something relatively simple.

 

\(-1*1004+2009\\ -1004+2009\\ 1005\)

 

This is exactly what everyone else got!

TheXSquaredFactor  Feb 6, 2018
 #4
avatar+89781 
0

I actually like your way better, X2....!!!!

 

 

cool cool cool

CPhill  Feb 6, 2018

40 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.