+0  
 
+1
48
2
avatar+122 

n Part a of this problem, you found the values of integers that satisfied the system of equations. In this part of the problem you will write up a full solution that describes how to solve this problem. Four positive integers $a$, $b$, $c$, and $d$ satisfy \begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*} and $abcd=8!$. What are $a$, $b$, $c$, and $d?$

Rollingblade  Apr 20, 2018
Sort: 

2+0 Answers

 #1
avatar+646 
+4

First of all, we have the equations:

 

\(\begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*}\)

 

and abcd=8!.

 

From the first equation, we have: 

 

\(ab + a + b = 524.\)

 

After factoring out the b, we have:

 

\(b(1 + a)  =  524 - a.\)

 

Solving for b, we have:

 

\(b =  \frac{524 -a}{1 + a}\)

 

From the second equation, we are going to try to write c in the form of a.

 

\(bc + b + c =  146.\)

 

Factoring out the b, we have:

 

\(b(c+1)+c=146.\)

 

Solving for b, we have:

 

\(b=\frac{146-c}{1+c}.\)

 

Since b = b, we have:

 

\(\frac{146-c}{1+c}=\frac{524 -a}{1 + a}.\)After cross-multiplying, we end up with:

 

\( (1+c)(524-a)=(1+a)(146-c).\)

 

Using the distributive property, we have:

 

\((524-a)+c(524-a)=146(1+a)-(524-a).\)

 

Isolating the expressions with c's and simplifying the left side, we have:

 

\(c(524-a+1+a)=146 + 146a-524+a.\)

 

Finalizing, we have:

 

\(c=\frac{7a-18}{25}.\)

 

Using the same method, we solve for d, and we end up with:

 

\(d =   \frac{374 - a}{1+a}.\)

 

Since abcd=8!, we have:

 

\(a\cdot\frac{524 - a}{1 + a}\cdot\frac{7a-18}{25}\cdot\frac{374 - a}{1 +a}  = 40320.\)

 

After simplifying and factoring, we have:

 

\((a - 24) (7a^3 -6136a^2 +232732a + 42000)   = 0.\)

 

The only way a can be an integer is when a=24.

 

From this, we can plug in a to find the other values.

 

\(\boxed{a=24}. \boxed{b=20}. \boxed{c=6}. \boxed{d=14}.\)

 

I hope this helped! :)

 

Gavin.

GYanggg  Apr 20, 2018
 #2
avatar+86613 
0

Nice, Gavin.....!!!

 

 

cool cool cool

CPhill  Apr 21, 2018

29 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy