We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
45
1
avatar

Find the product of all real numbers n which satisfy |n^2 - 9n + 20| = |16 - n^2|.

 Nov 18, 2019

Best Answer 

 #1
avatar+23542 
+3

Find the product of all real numbers \(n\) which satisfy \(|n^2 - 9n + 20| = |16 - n^2|\).

 

\(\begin{array}{|lrcll|} \hline & \mathbf{|n^2 - 9n + 20|} &=& \mathbf{|16 - n^2|} \quad | \quad \text{square both sides} \\\\ & (n^2 - 9n + 20)^2 &=& (16 - n^2)^2 \quad | \quad n^2 - 9n + 20 =(n-5)(n-4) \\ & (n-5)^2(n-4)^2 &=& (16 - n^2)^2 \quad | \quad (16 - n^2) =(4-n)(4+n) \\ & (n-5)^2(n-4)^2 &=& (4-n)^2(4+n)^2 \\ & (n-5)^2(n-4)^2 - (4-n)^2(4+n)^2 &=& 0 \\ & \mathbf{(n-4)^2\Big( (n-5)^2 - (4+n)^2 \Big)} &=& \mathbf{0} \\ \hline 1. & \mathbf{(n-4)^2} &=& \mathbf{0} \\ & n-4 &=& 0 \\ & \mathbf{n_1} &=& \mathbf{4} \\ \hline 2. & \mathbf{(n-5)^2 - (4+n)^2} &=& \mathbf{0} \\ & (n-5)^2 &=& (4+n)^2 \\ & n-5 &=& \pm \sqrt{(4+n)^2 } \\ & \mathbf{n-5} &=& \mathbf{\pm (4+n)} \\\\ 3. & n-5 &=& 4+n \\ & -5 &\neq& 4 \quad | \quad \text{no solution} \\\\ 4. & n-5 &=& -(4+n) \\ & n-5 &=& -4 - n \\ & 2n &=& 1 \\ & \mathbf{n_2} &=& \mathbf{\dfrac{1}{2}} \\ \hline \end{array}\)

 

The product of all real numbers \(n\) is \(n_1\times n_2 = 4\times \dfrac{1}{2} = \mathbf{2}\)

 

laugh

 Nov 18, 2019
 #1
avatar+23542 
+3
Best Answer

Find the product of all real numbers \(n\) which satisfy \(|n^2 - 9n + 20| = |16 - n^2|\).

 

\(\begin{array}{|lrcll|} \hline & \mathbf{|n^2 - 9n + 20|} &=& \mathbf{|16 - n^2|} \quad | \quad \text{square both sides} \\\\ & (n^2 - 9n + 20)^2 &=& (16 - n^2)^2 \quad | \quad n^2 - 9n + 20 =(n-5)(n-4) \\ & (n-5)^2(n-4)^2 &=& (16 - n^2)^2 \quad | \quad (16 - n^2) =(4-n)(4+n) \\ & (n-5)^2(n-4)^2 &=& (4-n)^2(4+n)^2 \\ & (n-5)^2(n-4)^2 - (4-n)^2(4+n)^2 &=& 0 \\ & \mathbf{(n-4)^2\Big( (n-5)^2 - (4+n)^2 \Big)} &=& \mathbf{0} \\ \hline 1. & \mathbf{(n-4)^2} &=& \mathbf{0} \\ & n-4 &=& 0 \\ & \mathbf{n_1} &=& \mathbf{4} \\ \hline 2. & \mathbf{(n-5)^2 - (4+n)^2} &=& \mathbf{0} \\ & (n-5)^2 &=& (4+n)^2 \\ & n-5 &=& \pm \sqrt{(4+n)^2 } \\ & \mathbf{n-5} &=& \mathbf{\pm (4+n)} \\\\ 3. & n-5 &=& 4+n \\ & -5 &\neq& 4 \quad | \quad \text{no solution} \\\\ 4. & n-5 &=& -(4+n) \\ & n-5 &=& -4 - n \\ & 2n &=& 1 \\ & \mathbf{n_2} &=& \mathbf{\dfrac{1}{2}} \\ \hline \end{array}\)

 

The product of all real numbers \(n\) is \(n_1\times n_2 = 4\times \dfrac{1}{2} = \mathbf{2}\)

 

laugh

heureka Nov 18, 2019

33 Online Users

avatar
avatar