What is the sum of the positive integers that are solutions of $-3n +3 >-11?$
What is the sum of the positive integers that are solutions of $-3n +3 >-11?$
\(\begin{array}{|rcll|} \hline -3n+3 &\gt& -11 \quad & | \quad -3 \\ -3n &\gt& -14 \quad & | \quad :(-3) \\ n &\color{red}\lt& \frac{-14}{-3} \\ n &\lt& \frac{14}{3} \\ n &\lt& 4.\bar{6} \\ \hline \end{array} \)
positive integers: \(n= 1,2,3,4\)
sum: \(1+2+3+4 =\mathbf{ 10}\)
What is the sum of the positive integers that are solutions of $-3n +3 >-11?$
\(\begin{array}{|rcll|} \hline -3n+3 &\gt& -11 \quad & | \quad -3 \\ -3n &\gt& -14 \quad & | \quad :(-3) \\ n &\color{red}\lt& \frac{-14}{-3} \\ n &\lt& \frac{14}{3} \\ n &\lt& 4.\bar{6} \\ \hline \end{array} \)
positive integers: \(n= 1,2,3,4\)
sum: \(1+2+3+4 =\mathbf{ 10}\)