+0

# Help!

0
207
1
+144

The line $$l_1$$ passes through the points $$(3,-3)$$  and $$(-5,2)$$ . The line is the graph of the equation $$Ax + By = C$$, where $$A$$, $$B$$ , and $$C$$  are integers with greatest common divisor 1, and A is positive. Find $$A + B + C$$.

Sep 28, 2018

#1
+7354
+1

slope of the line that passes through  (3, -3)  and  (-5, 2)   =   $$\frac{y_2-y_1}{x_2-x_1}\,=\,\frac{2--3}{-5-3}\,=\,-\frac{5}{8}$$

The line  l1  passes through the point  (3, -3)  and has a slope of  $$-\frac58$$   .

So the equation of  l1 in point-slope form is...

y - -3  =  $$-\frac58$$(x - 3)       Now we just have to get this equation in the form Ax + By  =  C

y + 3  =  $$-\frac58$$(x - 3)

Multiply both sides of the equation through by  8 .

8y + 24  =  -5(x - 3)

Distribute the  -5  to the terms in parenthesees.

8y + 24  =  -5x + 15

Subtract  24  from both sides of the equation.

8y  =  -5x + 15 - 24

8y  =  -5x - 9

Add  5x  to both sides of the equation.

5x + 8y  =  -9

5 ,  8 , and  -9  are integers with the greatest common divisor  1 , and  5  is positive.

5 + 8 + -9   =   4

Sep 29, 2018