We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
138
1
avatar

In the diagram, AB = 13 cm, DC = 20 cm, and AD = 5 cm. What is the length of AC, to the nearest tenth of a centimeter?

 Jan 2, 2019
 #1
avatar+101870 
+1

By the Pythagorean Theorem, BD = √ [ AB^2 - AD^2]  =√  [ 13^2 - 5^2] = √[ 169 - 25] = √144 = 12

 

And, again, by the Pythagorean Theorem, 

BC = √ [ DC^2 - BD^2 ] = √ [ 20^2 - 12^2 ] = √ [ 400 - 144 ] = √256  =  16

 

Call the intersection of BD and AC , E

 

Angle AED  = Angle CEB   [ vertical angles ]

Angle ADE = Angle CBE   [ right angles ]

 

Therefore ....triangle AED is similar to triangle CEB

 

And 

AD/BC = DE /BE

5/16 =  DE/BE

 

Therefore....there are 21 equal parts of BD...and BE is 16 of these...and DE is 5 of these....

So BE =  (16/21) *BD = (16/21)* 12 =  64/7

And DE = (5/21)* BD = (5/21)  *12 = 60/21 = 20/ 7

 

And by the Pythagorean Theorem

 

EC = √ [BE^2 + BC^2]  = √ [ (64/7)^2 + 16^2 ]

And

AE = √[ AD^2 + DE^2 ] = √ [ 5^2 + (20/7)^2 ]

 

So

AC  = AE  + EC  =  √ [ (64/7)^2 + 16^2 ] + √ [ 5^2 + (20/7)^2 ]   ≈  24.2 cm

 

 

 

cool cool cool

 Jan 2, 2019
edited by CPhill  Jan 2, 2019

6 Online Users

avatar