We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
319
1
avatar

Let $f(x)=7x+5$ and $g(x)=x-1$. If $h(x)=f(g(x))$, then what is the inverse of $h(x)$?

 Mar 18, 2018

Best Answer 

 #1
avatar+7543 
+2

f(x)  =  7x + 5

g(x)  =  x - 1

 

h(x)  =  f( g(x) )  =  f( x - 1 )  =  7(x - 1) + 5  =  7x - 7 + 5  =  7x - 2

 

h(x)  =  7x - 2

                            To find the inverse, let's replace  h(x)  with  y .

y  =  7x - 2

                            Solve for  x  ....add  2  to both sides of the equation.

y + 2  =  7x

                            Divide both sides by  7 .

(y + 2)/7  =  x

 

x  =  (y + 2)/7      So the inverse of  h(x)  is..

 

h-1(x)  =  (x + 2)/7

 Mar 19, 2018
 #1
avatar+7543 
+2
Best Answer

f(x)  =  7x + 5

g(x)  =  x - 1

 

h(x)  =  f( g(x) )  =  f( x - 1 )  =  7(x - 1) + 5  =  7x - 7 + 5  =  7x - 2

 

h(x)  =  7x - 2

                            To find the inverse, let's replace  h(x)  with  y .

y  =  7x - 2

                            Solve for  x  ....add  2  to both sides of the equation.

y + 2  =  7x

                            Divide both sides by  7 .

(y + 2)/7  =  x

 

x  =  (y + 2)/7      So the inverse of  h(x)  is..

 

h-1(x)  =  (x + 2)/7

hectictar Mar 19, 2018

9 Online Users