In the diagram below, $\angle AOB = 99^{\circ}$, and $\angle AOC = 133^{\circ}.$ What is the measure of $\angle BOC$?
The angles around vertex $O$ sum to $360^{\circ}$, so we have \[ \angle AOB+\angle BOC+\angle AOC = 360^{\circ}. \]In particular, \begin{align*} \angle BOC &= 360^{\circ} - \angle AOB - \angle AOC \\ &= 360^{\circ} - 99^{\circ} - 133^{\circ} \\ &= \boxed{128^{\circ}}. \end{align*}