+0  
 
+1
787
1
avatar+44 

How do you find the power for (12i-5)^2 in rectangular form? i represent imaginary number. Thanks

 Feb 25, 2019

Best Answer 

 #1
avatar+26396 
+3

How do you find the power for \((12i-5)^2\) in rectangular form?

I represent imaginary number.

 

\(\begin{array}{|rcll|} \hline && (12i-5)^2 \\ &=& (12i)^2 -2\cdot 12i \cdot 5 + 5^2 \\ &=& 12^2i^2 -10\cdot 12i + 25 \\ &=& 144i^2 -120i + 25 \\ &=& 144i^2+25 -120i \quad | \quad i^2 = -1 \\ &=& 144(-1)+25 -120i \\ &=& -144+25 -120i \\ \mathbf{(12i-5)^2} &\mathbf{=}& \mathbf{-119 -120i} \\ \hline \end{array}\)

 

laugh

 Feb 25, 2019
 #1
avatar+26396 
+3
Best Answer

How do you find the power for \((12i-5)^2\) in rectangular form?

I represent imaginary number.

 

\(\begin{array}{|rcll|} \hline && (12i-5)^2 \\ &=& (12i)^2 -2\cdot 12i \cdot 5 + 5^2 \\ &=& 12^2i^2 -10\cdot 12i + 25 \\ &=& 144i^2 -120i + 25 \\ &=& 144i^2+25 -120i \quad | \quad i^2 = -1 \\ &=& 144(-1)+25 -120i \\ &=& -144+25 -120i \\ \mathbf{(12i-5)^2} &\mathbf{=}& \mathbf{-119 -120i} \\ \hline \end{array}\)

 

laugh

heureka Feb 25, 2019

4 Online Users

avatar
avatar