+0

# help

0
142
1

Compute \(\large \dfrac{(10!\color{green}{+}9!)(8!\color{green}{+}7!)(6!\color{green}{+}5!)(4!\color{green}{+}3!)(2!\color{green}{+}1!)}{(10!\color{red}{-}9!)(8!\color{red}{-}7!)(6!\color{red}{-}5!)(4!\color{red}{-}3!)(2!\color{red}{-}1!)} = \, \, \large ?\)

Jun 29, 2020

#1
+21959
+2

Numerator:  10! + 9!  =  10·9! + 9!  =  10·9! + 1·9!  =  (10 + 1)·9!  =  11·9!

8! + 7!  =  8·7! + 7!  =  8·7! + 1·7!  =  (8 + 1)·7!  =  9·7!

6! + 5!  =  6·5! + 5!  =  6·5! + 1·5!  =  (6 + 1)·5!  =  7·5!

4! + 3!  =  4·3! + 3!  =  4·3! + 1·3!  =  (4 + 1)·3!  =  5·3!

2! + 1!  =  2·1! + 1!  =  2·1! + 1·1!  =  (2 + 1)·1!  =  3·1!

So, the numerator becomes:  11·9! · 9·7! · 7·5! · 5·3! · 3·1!

Denominator:  10! - 9!  =  10·9! - 9!  =  10·9! - 1·9!  =  (10 - 1)·9!  =  9·9!

Similarly:           8! - 7!  =  7·7!

6! - 5!  =  5·5!

4! - 3!  =  3·3!

2! - 1!  =  1·1!

The denominator becomes:  9·9! · 7·7!  · 5·5! · 3·3! · 1·1!

Start cancelling out, and you'll get the (rather surprising) short answer.

Jun 30, 2020