+0  
 
+1
243
1
avatar

The points $(0,4)$ and $(1,3)$ lie on a circle whose center is on the $x$-axis. What is the radius of the circle?

Guest Nov 21, 2017
 #1
avatar+19624 
+3

The points $(0,4)$ and $(1,3)$ lie on a circle whose center is on the $x$-axis.
What is the radius of the circle?

 

Let \(P_1 = (x_1,y_1) = (0,4)\)
Let \(P_2 = (x_2,y_2) = (1,3)\)
Let Center of the circle \(C = (x_c,y_c) = (\ ?,0)\)
Let radius of the circle = r

 

\(\begin{array}{|lrcll|} \hline & (x_c-x_1)^2 + (y_c-y_1)^2 &=& r^2 \quad & | \quad y_c = 0 \\ & (x_c-x_1)^2 + (0-y_1)^2 &=& r^2 \\ (1) & x_c^2-2x_cx_1+x_1^2 + y_1^2 &=& r^2 \\ \hline & (x_c-x_2)^2 + (y_c-y_2)^2 &=& r^2 \quad & | \quad y_c = 0 \\ & (x_c-x_2)^2 + (0-y_2)^2 &=& r^2 \\ (2) & x_c^2-2x_cx_2+x_2^2 + y_2^2 &=& r^2 \\ \hline \end{array} \)

 

\(\small{ \begin{array}{|lrcll|} \hline (1)-(2): & x_c^2-2x_cx_1+x_1^2 + y_1^2-(x_c^2-2x_cx_2+x_2^2 + y_2^2) &=& r^2-r^2 \\ & x_c^2-2x_cx_1+x_1^2 + y_1^2-x_c^2+2x_cx_2-(x_2^2 + y_2^2) &=& 0 \\ & -2x_cx_1+x_1^2 + y_1^2 +2x_cx_2-(x_2^2 + y_2^2) &=& 0 \\ & 2x_c(x_2-x_1)+x_1^2 + y_1^2 -(x_2^2 + y_2^2) &=& 0 \\ & 2x_c(x_2-x_1) &=& (x_2^2 + y_2^2)-(x_1^2 + y_1^2) \\ & \mathbf{ x_c } & \mathbf{=} & \mathbf{\dfrac{(x_2^2 + y_2^2)-(x_1^2 + y_1^2)} {2(x_2-x_1)}} \\ & && | \quad x_1 = 0 \quad y_1 = 4 \quad x_2 = 1 \quad y_2 = 3 \\ & x_c & = & \dfrac{(1^2 + 3^2)-(0^2 + 4^2)} {2(1-0)} \\ & x_c & = & \dfrac{10-16 } {2 } \\ & \mathbf{x_c} &\mathbf{ =} &\mathbf{ -3} \\\\ \hline (1) & x_c^2-2x_cx_1+x_1^2 + y_1^2 &=& r^2 \\ & (-3)^2-2(-3)(0)+0^2 + 4^2 &=& r^2 \\ & 9+16 &=& r^2 \\ & 25 &=& r^2 \\ & \mathbf{5} &\mathbf{ =}& \mathbf{r} \\ \hline \end{array} }\)

 

 

laugh

heureka  Nov 21, 2017
edited by heureka  Nov 21, 2017

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.