If a + b + c =11 and ab + bc + ac = 25,then find the value of a^3 + b^3 + c^3 – 3abc
Notice that \(a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - (ab + bc +ca))\)
The only missing info we need is the value of \(a^2 + b^2 + c^2\).
Now, because \((a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)\), plugging in values gives \(a^2 + b^2 + c^2 = 11^2 - 2(25) = 71\)
You can plug in the values on your own.