What is the sum of the tens digit and the units digit in the decimal representation of 9^2004?
9^0 01
9^1 09
9^2 81
729
6561
59049
531441
4782969
43046721
387420489
3486784401
31381059609
Lo0ks like if even the number ends in 1
the tens pattern as 0 8 2 6 4 4 6 2 8 0 2004 would be the 5th in the sequence
1 + 6 = 7 My guess
You are correct....I originally had 01 in there, but it got deleted while I was formatting my answer before posting.....fixed it...THANX ! ~EP
9^2004 = (10 - 1)^2004
So....the binomial expansion is
10^2004 - C(2004, 1) * 10^2003 + C(2004, 2)*10^2002 - ..... - C(2004,2002)(10)^2 + C(2004, 2003) (10) - 1
All of the terms except the last three end in "000"...so they add nothing to the sum of the last two digits in the expansion
And the last three terms are
-200,700,600 + 20040 - 1 =
abs [ -600 + 40 - 1 ]
abs [ -601 + 40 ] =
abs [-561 ] =
561
And the sum of the tens and the units digits in the expansion = 7
What is the sum of the tens digit and the units digit in the decimal representation of \(9^{2004}\)?
\(\begin{array}{|rcll|} \hline && 9^{2004} \pmod{100} \\ &\equiv & \left(3^2\right)^{2004} \pmod{100} \\ &\equiv & 3^{2\cdot 2004} \pmod{100} \\ &\equiv & 3^{4008} \pmod{100} \quad &| \quad 3^{\phi(100)} \equiv 1 \pmod{100} \qquad \phi(100) = 40 \\ & & \quad &| \quad 3^{40} \equiv 1 \pmod{100} \\ &\equiv & 3^{40\cdot 100 + 8} \pmod{100} \\ &\equiv & \left(3^{40}\right)^{100} 3^8 \pmod{100} \\ &\equiv & 1^{100} 3^8 \pmod{100} \\ &\equiv & 3^8 \pmod{100} \\ &\equiv & 6561 \pmod{100} \\ &\equiv & \mathbf{61\pmod{100}} \\ \hline \end{array} \)
The sum of the tens digit and the units digit in the decimal representation of \(9^{2004}\) is \(6+1 =\mathbf{ 7}\)