What is the value of the expression above when x = 2 and y = 3? Please show your work! :)
4x + 1/3y to the power of 2. Oops!!
\((4x +\dfrac{1}{3}y)^2\)This?
\((4x + \dfrac{1}{3y})^2\)This?
\(4x + \dfrac{1}{3y^2}\)Or this?
\(4x + \dfrac{1}{(3y)^2}\)Or this?
\(4x + (\dfrac{1}{3y})^2\)This?
\(4x + \dfrac{1}{3}y^2\)Or even this?
Welp. Confused. Parentheses are important.
Nvm. I will do all of them
When x = 2, y = 3,
\((4x +\dfrac{1}{3}y)^2\\ =(4\times 2+\dfrac{1}{3}\times 3)^2\\ =(8 + 1)^2\\ =9^2\\ =81\)
-------------------------------------------------------------------------
\((4x + \dfrac{1}{3y})^2\\ =(4\times 2 + \dfrac{1}{3\times 3})^2\\ =(8 + \dfrac{1}{9})^2\\ =(\dfrac{73}{9})^2\\ =\dfrac{73^2}{9^2}\\ =\dfrac{5329}{81}\)
------------------------------------------------------------------------
\(4x + \dfrac{1}{3y^2}\\ =4\times 2 + \dfrac{1}{3\times 3^2}\\ =8 + \dfrac{1}{27}\\ =\dfrac{217}{27}\)
-----------------------------------------------------------------------
\(4x + \dfrac{1}{(3y)^2}\\ =4\times 2 + \dfrac{1}{(3\times 3)^2}\\ = 8 + \dfrac{1}{81}\\ =\dfrac{649}{81}\)
----------------------------------------------------------------------
\(4x + (\dfrac{1}{3y})^2\\ =4\times 2 + (\dfrac{1}{3\times 3})^2\\ =8 + \dfrac{1}{81}\\ =\dfrac{649}{81}\)
---------------------------------------------------------------------
\(4x + \dfrac{1}{3}y^2\\ =4\times 2 + \dfrac{1}{3}\times 3^2\\ =8 + 3\\ =11\)