We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
154
1
avatar+1195 

Let \((x,y)\) be an ordered pair of real numbers that satisfies the equation \(x^2+y^2=14x+48y\). What is the maximum value of y?

 Jul 16, 2019
 #1
avatar+105195 
+2

x^2 + y^2  = 14x + 48y         rearrange as

 

x^2 - 14x  + y^2 - 48y  = 0      complete the square on x and y

 

x^2 -14x + 49 + y^2 - 48y + 576  =  49 + 576        factor  and simplify

 

(x -7)^2  + ( y - 24)^2  =  625

 

This is a circle centered at  ( 7 , 24)   with  a radius of √625  =  25

 

The max value for y will therefore be   24 + 25   =  49

 

 

cool cool cool

 Jul 16, 2019

27 Online Users

avatar
avatar
avatar