I thinks the answer is 1 because a can equal 5 and -4. I didn't realize that a could be negative.
Hope it helps!
Let f(x)=3x+2 and g(x)=ax+b, for some constants a and b.
If ab=20 and f(g(x))=g(f(x)) for x=0,1,2,…,9, find the sum of all possible values of a.
f(x)=3x+2|x=g(x)f(g(x))=3g(x)+2|g(x)=ax+bf(g(x))=3(ax+b)+2f(g(x))=3ax+3b+2|b=20af(g(x))=3ax+3∗20a+2f(g(x))=3ax+60a+2g(x)=ax+b|x=f(x)g(f(x))=af(x)+b|f(x)=3x+2g(f(x))=a(3x+2)+bg(f(x))=3ax+2a+b|b=20ag(f(x))=3ax+2a+20a
f(g(x))=g(f(x))3ax+60a+2=3ax+2a+20a60a+2=2a+20a60a−20a+2=2a40a+2=2a|∗a40+2a=2a2|:220+a=a2a2−a−20=0a1,2=1±√1−4(−20)2a1,2=1±√812a1,2=1±92a1=12+92a2=12−92a1+a2=2×12a1+a2=1