+0

# help

+1
358
4
+394

In triangle  ABC, the angles A and B have the same  measure, while the measure of angle C is 42°

larger than the measure of each of A and B. What are the measures of the three angles?

The measure of angle A and the measure of angle B are each ___

Nov 17, 2017

#1
+7348
+4

The problem tells us that

A  =  B

and

C  =  42° + A

And we know that the sum of the angles in any triangle is  180° , so

A + B + C  =  180°         Since  A = B , we can substitute  A  in for  B .

A + A + C  =  180°         Since  C = 42° + A , we can substitute  42° + A  in for  C .

A + A + 42° + A  =  180°        Combine the  3  A's  together.

3A + 42°  =  180°                   Subtract  42°  from both sides of the equation.

3A  =  138°                             Divide both sides by  3 .

A  =  46°

And  B = A  so  B = 46°

Nov 17, 2017

#1
+7348
+4

The problem tells us that

A  =  B

and

C  =  42° + A

And we know that the sum of the angles in any triangle is  180° , so

A + B + C  =  180°         Since  A = B , we can substitute  A  in for  B .

A + A + C  =  180°         Since  C = 42° + A , we can substitute  42° + A  in for  C .

A + A + 42° + A  =  180°        Combine the  3  A's  together.

3A + 42°  =  180°                   Subtract  42°  from both sides of the equation.

3A  =  138°                             Divide both sides by  3 .

A  =  46°

And  B = A  so  B = 46°

hectictar Nov 17, 2017
#2
0

What’s the measure of angle C

Nov 17, 2017
#3
+7348
+2

C  =  42° + A           and we know what  A  is,

A  =  46°

Do you know how to find  C  now?

hectictar  Nov 17, 2017
#4
+394
+2

C = 88°