+0  
 
+1
1005
4
avatar+394 

In triangle  ABC, the angles A and B have the same  measure, while the measure of angle C is 42°

larger than the measure of each of A and B. What are the measures of the three angles?

 

The measure of angle A and the measure of angle B are each ___ 

 Nov 17, 2017

Best Answer 

 #1
avatar+9481 
+4

The problem tells us that

 

A  =  B

 

and

 

C  =  42° + A

 

And we know that the sum of the angles in any triangle is  180° , so

 

A + B + C  =  180°         Since  A = B , we can substitute  A  in for  B .

 

A + A + C  =  180°         Since  C = 42° + A , we can substitute  42° + A  in for  C .

 

A + A + 42° + A  =  180°        Combine the  3  A's  together.

 

3A + 42°  =  180°                   Subtract  42°  from both sides of the equation.

 

3A  =  138°                             Divide both sides by  3 .

 

A  =  46°

 

And  B = A  so  B = 46°

 Nov 17, 2017
 #1
avatar+9481 
+4
Best Answer

The problem tells us that

 

A  =  B

 

and

 

C  =  42° + A

 

And we know that the sum of the angles in any triangle is  180° , so

 

A + B + C  =  180°         Since  A = B , we can substitute  A  in for  B .

 

A + A + C  =  180°         Since  C = 42° + A , we can substitute  42° + A  in for  C .

 

A + A + 42° + A  =  180°        Combine the  3  A's  together.

 

3A + 42°  =  180°                   Subtract  42°  from both sides of the equation.

 

3A  =  138°                             Divide both sides by  3 .

 

A  =  46°

 

And  B = A  so  B = 46°

hectictar Nov 17, 2017
 #2
avatar
0

What’s the measure of angle C

 Nov 17, 2017
 #3
avatar+9481 
+2

C  =  42° + A           and we know what  A  is,

 

A  =  46° 

 

Do you know how to find  C  now?

hectictar  Nov 17, 2017
 #4
avatar+394 
+2

C = 88° 

ladiikeiii  Nov 27, 2017

1 Online Users