+0  
 
0
224
1
avatar+4407 

Help.

NotSoSmart  Nov 2, 2017

Best Answer 

 #1
avatar+7339 
+1

1.     -4x2 - 3x + 2  =  0       Here,  a = -4 ,  b = -3 ,  and  c = 2  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ x = {-(-3) \pm \sqrt{(-3)^2-4(-4)(2)} \over 2(-4)} \\~\\ x = {3 \pm \sqrt{9+32} \over -8} \\~\\ x = {3 \pm \sqrt{41} \over -8} \\~\\ x = -\frac{3}{8}\pm\frac{\sqrt{41}}{8}\)

 

 

 

2.     h2 + 5h  =  295     This is the equation we need to solve. Subtract  295  from both sides.

 

h2 + 5h - 295  =  0       Now this is a quadratic equation with  x = h,  a = 1 ,  b = 5 ,  and  c = -295  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ h = {-5 \pm \sqrt{5^2-4(1)(-295)} \over 2(1)} \\~\\ h = {-5 \pm \sqrt{25+1180} \over 2} \\~\\ h = {-5 + \sqrt{1205} \over 2}\qquad\text{or}\qquad h = {-5 - \sqrt{1205} \over 2}\)

 

At this point, lets just plug both of these into a calculator to get

 

h  ≈  14.86   or   h  ≈  -19.86

 

h  is a distance, so the answer is  14.86 yards .   smiley

hectictar  Nov 2, 2017
 #1
avatar+7339 
+1
Best Answer

1.     -4x2 - 3x + 2  =  0       Here,  a = -4 ,  b = -3 ,  and  c = 2  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ x = {-(-3) \pm \sqrt{(-3)^2-4(-4)(2)} \over 2(-4)} \\~\\ x = {3 \pm \sqrt{9+32} \over -8} \\~\\ x = {3 \pm \sqrt{41} \over -8} \\~\\ x = -\frac{3}{8}\pm\frac{\sqrt{41}}{8}\)

 

 

 

2.     h2 + 5h  =  295     This is the equation we need to solve. Subtract  295  from both sides.

 

h2 + 5h - 295  =  0       Now this is a quadratic equation with  x = h,  a = 1 ,  b = 5 ,  and  c = -295  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ h = {-5 \pm \sqrt{5^2-4(1)(-295)} \over 2(1)} \\~\\ h = {-5 \pm \sqrt{25+1180} \over 2} \\~\\ h = {-5 + \sqrt{1205} \over 2}\qquad\text{or}\qquad h = {-5 - \sqrt{1205} \over 2}\)

 

At this point, lets just plug both of these into a calculator to get

 

h  ≈  14.86   or   h  ≈  -19.86

 

h  is a distance, so the answer is  14.86 yards .   smiley

hectictar  Nov 2, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.