+0  
 
0
37
1
avatar+1016 

Help.

NotSoSmart  Nov 2, 2017

Best Answer 

 #1
avatar+5256 
+1

1.     -4x2 - 3x + 2  =  0       Here,  a = -4 ,  b = -3 ,  and  c = 2  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ x = {-(-3) \pm \sqrt{(-3)^2-4(-4)(2)} \over 2(-4)} \\~\\ x = {3 \pm \sqrt{9+32} \over -8} \\~\\ x = {3 \pm \sqrt{41} \over -8} \\~\\ x = -\frac{3}{8}\pm\frac{\sqrt{41}}{8}\)

 

 

 

2.     h2 + 5h  =  295     This is the equation we need to solve. Subtract  295  from both sides.

 

h2 + 5h - 295  =  0       Now this is a quadratic equation with  x = h,  a = 1 ,  b = 5 ,  and  c = -295  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ h = {-5 \pm \sqrt{5^2-4(1)(-295)} \over 2(1)} \\~\\ h = {-5 \pm \sqrt{25+1180} \over 2} \\~\\ h = {-5 + \sqrt{1205} \over 2}\qquad\text{or}\qquad h = {-5 - \sqrt{1205} \over 2}\)

 

At this point, lets just plug both of these into a calculator to get

 

h  ≈  14.86   or   h  ≈  -19.86

 

h  is a distance, so the answer is  14.86 yards .   smiley

hectictar  Nov 2, 2017
Sort: 

1+0 Answers

 #1
avatar+5256 
+1
Best Answer

1.     -4x2 - 3x + 2  =  0       Here,  a = -4 ,  b = -3 ,  and  c = 2  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ x = {-(-3) \pm \sqrt{(-3)^2-4(-4)(2)} \over 2(-4)} \\~\\ x = {3 \pm \sqrt{9+32} \over -8} \\~\\ x = {3 \pm \sqrt{41} \over -8} \\~\\ x = -\frac{3}{8}\pm\frac{\sqrt{41}}{8}\)

 

 

 

2.     h2 + 5h  =  295     This is the equation we need to solve. Subtract  295  from both sides.

 

h2 + 5h - 295  =  0       Now this is a quadratic equation with  x = h,  a = 1 ,  b = 5 ,  and  c = -295  .

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ h = {-5 \pm \sqrt{5^2-4(1)(-295)} \over 2(1)} \\~\\ h = {-5 \pm \sqrt{25+1180} \over 2} \\~\\ h = {-5 + \sqrt{1205} \over 2}\qquad\text{or}\qquad h = {-5 - \sqrt{1205} \over 2}\)

 

At this point, lets just plug both of these into a calculator to get

 

h  ≈  14.86   or   h  ≈  -19.86

 

h  is a distance, so the answer is  14.86 yards .   smiley

hectictar  Nov 2, 2017

5 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details