1. -4x2 - 3x + 2 = 0 Here, a = -4 , b = -3 , and c = 2 .
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ x = {-(-3) \pm \sqrt{(-3)^2-4(-4)(2)} \over 2(-4)} \\~\\ x = {3 \pm \sqrt{9+32} \over -8} \\~\\ x = {3 \pm \sqrt{41} \over -8} \\~\\ x = -\frac{3}{8}\pm\frac{\sqrt{41}}{8}\)
2. h2 + 5h = 295 This is the equation we need to solve. Subtract 295 from both sides.
h2 + 5h - 295 = 0 Now this is a quadratic equation with x = h, a = 1 , b = 5 , and c = -295 .
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ h = {-5 \pm \sqrt{5^2-4(1)(-295)} \over 2(1)} \\~\\ h = {-5 \pm \sqrt{25+1180} \over 2} \\~\\ h = {-5 + \sqrt{1205} \over 2}\qquad\text{or}\qquad h = {-5 - \sqrt{1205} \over 2}\)
At this point, lets just plug both of these into a calculator to get
h ≈ 14.86 or h ≈ -19.86
h is a distance, so the answer is 14.86 yards .
1. -4x2 - 3x + 2 = 0 Here, a = -4 , b = -3 , and c = 2 .
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ x = {-(-3) \pm \sqrt{(-3)^2-4(-4)(2)} \over 2(-4)} \\~\\ x = {3 \pm \sqrt{9+32} \over -8} \\~\\ x = {3 \pm \sqrt{41} \over -8} \\~\\ x = -\frac{3}{8}\pm\frac{\sqrt{41}}{8}\)
2. h2 + 5h = 295 This is the equation we need to solve. Subtract 295 from both sides.
h2 + 5h - 295 = 0 Now this is a quadratic equation with x = h, a = 1 , b = 5 , and c = -295 .
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\~\\ h = {-5 \pm \sqrt{5^2-4(1)(-295)} \over 2(1)} \\~\\ h = {-5 \pm \sqrt{25+1180} \over 2} \\~\\ h = {-5 + \sqrt{1205} \over 2}\qquad\text{or}\qquad h = {-5 - \sqrt{1205} \over 2}\)
At this point, lets just plug both of these into a calculator to get
h ≈ 14.86 or h ≈ -19.86
h is a distance, so the answer is 14.86 yards .