Processing math: 100%
 
+0  
 
0
2174
2
avatar

1) If z={3}22{2}2{3}2{2} find $\lfloor z \rfloor$.

2) Find all $x$ for which |x|x1||=x. Express your answer in interval notation.

3) Which positive real number $x$ has the property that $x$, $\lfloor x \rfloor$, and $x - \lfloor x\rfloor$ form a geometric progression (in that order)? (Recall that $\lfloor x\rfloor$ means the greatest integer less than or equal to $x$.)

4) Let N=1000k=1k(log2klog2k). Find $N$.

5) Let $f(x)$ be the function whose domain is all positive real numbers defined by the formula f(x)={2x+5x+7x2x2kx=2If $f(x)$ is continuous, what is the value of $k$?

6) Prove that $\lfloor 2x \rfloor + \lfloor 2y \rfloor \geq \lfloor x \rfloor + \lfloor y \rfloor + \lfloor x+y \rfloor$ for all real $x$ and $y$.

 

Thanks for help in advance!

 Jan 20, 2019
 #1
avatar+33654 
+3

Hmm. If I use LaTeX here in the answer some of it displays properly in the question.  If I delete the LaTeX here the question looks a mess again!!

 

So:  Use the LaTeX button and copy and paste your questions into the resulting box, having removed the $ signs. e.g.

 

 If z={3}22{2}2{3}2{2} find z

 Jan 21, 2019
edited by Alan  Jan 21, 2019
edited by Alan  Jan 21, 2019
edited by Alan  Jan 21, 2019
 #2
avatar+35 
0

1.) If, z={3}22{2}2{3}2{2}, find z.

 

The fact that 2=3=1, should help. Rewrite the roots in brackets with {2}=21 and {3}=31

 Jan 26, 2019

2 Online Users

avatar
avatar