+0  
 
0
43
1
avatar+902 

 

In the figure with four circles below, let A1 be the area of the smallest circle, let A2 be the area of the region inside the second-smallest circle but outside the smallest circle, and so on. If A1 : A2 : A3 : A4 = 1 : 2 : 3 : 4, then find the ratio of the largest radius to the smallest radius.

 Dec 27, 2018

Best Answer 

 #1
avatar+3576 
+3

\(A_2 = \pi(r_2^2-r_1^2)\\ r_2^2 =\dfrac{A_2 + \pi r_1^2}{\pi} = \dfrac{A_2 + A_1}{\pi}\\ A_3 = \pi(r_3^2 - r_2^2) \\ r_3^2 = \dfrac{A_3 + \pi r_2^2}{\pi} = \dfrac{A_3+A_2+A_1}{\pi}\\ r_4^2 = \dfrac{A_4+A_3+A_2+A_1}{\pi}\)

 

\(r_4^2 = \dfrac {(4+3+2+1)A_1}{\pi} = \dfrac{10}{\pi}\cdot \pi r_1^2 = 10 r_1^2\\ \left(\dfrac{r_4}{r_1}\right)^2 = 10\\ \dfrac{r_4}{r_1} = \sqrt{10}\)

.
 Dec 28, 2018
 #1
avatar+3576 
+3
Best Answer

\(A_2 = \pi(r_2^2-r_1^2)\\ r_2^2 =\dfrac{A_2 + \pi r_1^2}{\pi} = \dfrac{A_2 + A_1}{\pi}\\ A_3 = \pi(r_3^2 - r_2^2) \\ r_3^2 = \dfrac{A_3 + \pi r_2^2}{\pi} = \dfrac{A_3+A_2+A_1}{\pi}\\ r_4^2 = \dfrac{A_4+A_3+A_2+A_1}{\pi}\)

 

\(r_4^2 = \dfrac {(4+3+2+1)A_1}{\pi} = \dfrac{10}{\pi}\cdot \pi r_1^2 = 10 r_1^2\\ \left(\dfrac{r_4}{r_1}\right)^2 = 10\\ \dfrac{r_4}{r_1} = \sqrt{10}\)

Rom Dec 28, 2018

22 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.