+0  
 
0
839
3
avatar

Simplify: $\frac{1}{\sqrt{2}+\frac{1}{\sqrt{8}+\sqrt{200}+\frac{1}{\sqrt{18}}}}$.

 Jun 13, 2019
 #1
avatar+248 
+1

\(\frac{1}{\sqrt{2}+\frac{1}{\sqrt{8}+\sqrt{200}+\frac{1}{\sqrt{18}}}}\)

First, simplify the radicles in the expression

\(\sqrt{8}=\sqrt{2 \cdot 2\cdot 2} =2\sqrt{2}\)

\(\sqrt{200}=\sqrt{10\cdot20\cdot2}=10\sqrt{2}\)

\(\sqrt{18}=\sqrt{3\cdot3\cdot2}=3\sqrt{2}\)

 

\(\frac{1}{\sqrt{2}+\frac{1}{2\sqrt{2}+10\sqrt{2}+\frac{1}{3\sqrt{2}}}}\)

The two radicles can be added together because they have the same base

\(\frac{1}{\sqrt{2}+\frac{1}{12\sqrt{2}+\frac{1}{3\sqrt{2}}}}\)

Now start simplifying from the innermost fraction

Find a common denominator to add the two on the bottom

\(\frac{1}{\sqrt{2}+\frac{1}{\frac{73}{3\sqrt{2}}}}\)

\(\frac{1}{\sqrt{2}+\frac{3\sqrt{2}}{73}}\)

Find a common denominator again

\(\frac{1}{\frac{73\sqrt{2}}{73}+\frac{3\sqrt{2}}{73}}\)

Add the fractions

\(\frac{1}{\frac{76\sqrt{2}}{73}}\)

 

\(\frac{73}{76\sqrt{2}}\)

Multiply by \(\frac{\sqrt{2}}{\sqrt{2}}\) to get the radicle out of the denominator

\(\boxed{\frac{73\sqrt{2}}{152}}\)

 Jun 14, 2019
edited by power27  Jun 14, 2019
 #2
avatar
+1

You got the answer right at this step:

73 / 76 * sqrt(2) . How did you "factor out" 73?

 Jun 14, 2019
 #3
avatar+248 
+1

Oh oops thanks for catching that you can't do that.

power27  Jun 14, 2019

1 Online Users