+0

# help

0
237
2

Syd chooses two different primes, both of which are greater than 10 and multiplies them. The resulting product is less than 500 How many different products could Syd have ended up with?

Dec 15, 2019

#1
+1

a=(11,  13,  17,  19,  23,  29,  31,  37,  41,  43); i=0; j=2; c=a[0]*a[1]; cycle: m=a[i]*a[j]; if(m<500, c=sort(c,m), goto next);j++; if(j next: i++; j=i+1; if(j

OUTPUT = (143, 187, 209, 221, 247, 253, 299, 319, 323, 341, 377, 391, 403, 407, 437, 451, 473, 481, 493)>Total = 19

Dec 15, 2019
#2
+109740
+1

The least  prime  is 11   and the greatest  is 43

And the possible primes are

11, 13, 17, 19, 23 , 29, 31, 37, 41 , 43

The possibilities are

11     13    17    19    23    29   31    37   41    43

11               OK   OK  OK   OK  OK  OK   OK  OK  OK

13                       OK  OK   OK  OK  OK   OK

17                              OK   OK  OK

19                                      OK

So   19  possible products  (if I counted correctly)

Dec 15, 2019