+0  
 
+3
37
2
avatar+598 

Solve and find the domain of the equation:

 

\(x^{\log _\sqrt{x} (x-2)}=9\)

michaelcai  Feb 12, 2018

Best Answer 

 #2
avatar+18956 
+1

Solve and find the domain of the equation:

\(\huge{ x^{\log_\sqrt{x} (x-2)}=9 }\)

 

1. Domain:

\(x-2 > 0 \\ x > 2 \)

\(\text{ $\{x \in R : x>2\}$ (assuming a function from reals to reals) } \)

 

2. Solve:

\(\begin{array}{|rcll|} \hline \large{ x^{\log_\sqrt{x} (x-2)} }& \large{=}& \large{9} \\ && \boxed{ \log_\sqrt{x} (x-2) = \dfrac{\ln(x-2)}{\ln(\sqrt{x})} \\ = \dfrac{\ln(x-2)}{\ln(x^{\frac12})}\\ = \dfrac{\ln(x-2)}{\frac12\ln(x)}\\ = \dfrac{2\ln(x-2)}{\ln(x)}} \\ \large{ x^{\dfrac{2\ln(x-2)}{\ln(x)}}}& \large{=}& \large{9} \\ && \boxed{\text{Formula: } a^b = e^{\ln(a^b)} = e^{b\ln(a)} } \\ && \boxed{ x^{\dfrac{2\ln(x-2)}{\ln(x)}} = e^{ \dfrac{2\ln(x-2)}{\ln(x)} \cdot \ln(x) } =e^{2\ln(x-2)} } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \large{ e^{2\ln(x-2)} } & \large{=} & \large{9} \\ \large{ e^{\ln\left((x-2)^2\right)} } & \large{=} & \large{9} \quad & | \quad e^{\ln\left((x-2)^2\right)} = (x-2)^2 \\ \large{ (x-2)^2 } & \large{=} & \large{9} \quad & | \quad \sqrt{} \text{ both sides} \\ \large{ x-2 } & \large{=} & \large{\pm 3} \\\\ x_1 -2 &=& 3 \\ x_1 &=& 3+2 \\ \mathbf{x_1} & \mathbf{=} & \mathbf{5} \\\\ x_2 -2 &=& -3 \\ x_2 &=& -3+2 \\ \mathbf{x_2} & \mathbf{=} & \mathbf{-1} \quad & | \quad \text{no solution, see domain } x> 2 \\ \hline \end{array}\)

 

laugh

heureka  Feb 13, 2018
Sort: 

2+0 Answers

 #1
avatar
+1

Solve for x:
x^(log(x)/(log(sqrt(x)))) = 9

Simplify and substitute y = sqrt(x).
x^(log(x)/(log(sqrt(x)))) = sqrt(x)^4
 = y^4:
y^4 = 9

Taking 4^th roots gives sqrt(3) times the 4^th roots of unity:
y = -sqrt(3) or y = -i sqrt(3) or y = i sqrt(3) or y = sqrt(3)

Substitute back for y = sqrt(x):
sqrt(x) = -sqrt(3) or sqrt(x) = -i sqrt(3) or sqrt(x) = i sqrt(3) or sqrt(x) = sqrt(3)

Raise both sides to the power of two:
x = 3 or sqrt(x) = -i sqrt(3) or sqrt(x) = i sqrt(3) or sqrt(x) = sqrt(3)

Raise both sides to the power of two:
x = 3 or x = -3 or sqrt(x) = i sqrt(3) or sqrt(x) = sqrt(3)

Raise both sides to the power of two:
x = 3 or x = -3 or x = -3 or sqrt(x) = sqrt(3)
Raise both sides to the power of two:
x = 3    or x = -3     or x = -3      or x = 3

 

Domain: {x element R : 2 3 + sqrt(5)} (assuming a function from reals to reals)

Guest Feb 13, 2018
 #2
avatar+18956 
+1
Best Answer

Solve and find the domain of the equation:

\(\huge{ x^{\log_\sqrt{x} (x-2)}=9 }\)

 

1. Domain:

\(x-2 > 0 \\ x > 2 \)

\(\text{ $\{x \in R : x>2\}$ (assuming a function from reals to reals) } \)

 

2. Solve:

\(\begin{array}{|rcll|} \hline \large{ x^{\log_\sqrt{x} (x-2)} }& \large{=}& \large{9} \\ && \boxed{ \log_\sqrt{x} (x-2) = \dfrac{\ln(x-2)}{\ln(\sqrt{x})} \\ = \dfrac{\ln(x-2)}{\ln(x^{\frac12})}\\ = \dfrac{\ln(x-2)}{\frac12\ln(x)}\\ = \dfrac{2\ln(x-2)}{\ln(x)}} \\ \large{ x^{\dfrac{2\ln(x-2)}{\ln(x)}}}& \large{=}& \large{9} \\ && \boxed{\text{Formula: } a^b = e^{\ln(a^b)} = e^{b\ln(a)} } \\ && \boxed{ x^{\dfrac{2\ln(x-2)}{\ln(x)}} = e^{ \dfrac{2\ln(x-2)}{\ln(x)} \cdot \ln(x) } =e^{2\ln(x-2)} } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \large{ e^{2\ln(x-2)} } & \large{=} & \large{9} \\ \large{ e^{\ln\left((x-2)^2\right)} } & \large{=} & \large{9} \quad & | \quad e^{\ln\left((x-2)^2\right)} = (x-2)^2 \\ \large{ (x-2)^2 } & \large{=} & \large{9} \quad & | \quad \sqrt{} \text{ both sides} \\ \large{ x-2 } & \large{=} & \large{\pm 3} \\\\ x_1 -2 &=& 3 \\ x_1 &=& 3+2 \\ \mathbf{x_1} & \mathbf{=} & \mathbf{5} \\\\ x_2 -2 &=& -3 \\ x_2 &=& -3+2 \\ \mathbf{x_2} & \mathbf{=} & \mathbf{-1} \quad & | \quad \text{no solution, see domain } x> 2 \\ \hline \end{array}\)

 

laugh

heureka  Feb 13, 2018

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details