+0  
 
0
82
2
avatar

a · b = 20

b · c = 12

a + b + c =12 

a=? b=? c=?

Guest Aug 31, 2018
 #1
avatar+90969 
+1

a · b = 20

b · c = 12

a + b + c =12 

a=? b=? c=?

 

a =  20/b

c  = 12/ b

 

So

 

a +  b +  c  = 12    substitute for a, c

 

20/b + b + 12/b  =  12      multiply through by b

 

20 + b^2 + 12  = 12b     rearrange and simplify

 

b^2 - 12b + 32   =  0       factor

 

(b - 4) ( b - 8)  = 0

 

Set each factor to 0   and solve for  b  and we have that

 

b  = 4   or  b  = 8

 

If we want  a and c to  be integers, then b = 4  is the only solution

 

And  a  = 20 / b = 20 / 4  = 5

And c  = 12/b  = 12/4   = 3

 

So

a * b  = 5 * 4  = 20

b * c =  4 * 3   = 12

And

a + b + c  = 5 + 4 + 3   = 12

 

So  (a, b, c)  = ( 5 , 4, 3)

 

 

cool cool cool

CPhill  Aug 31, 2018
 #2
avatar+7324 
+1

a · b  =  20      Divide both sides of this equation by  b  to solve for  a .

a  =  20 / b

 

b · c  =  12      Divide both sides of this equation by  b  to solve for  c .

c  =  12 / b

 

a + b + c  =  12

                                    Substitute  20/b  in for  a ,  and substitute  12/b  in for  c .

\(\frac{20}{b}\) + b + \(\frac{12}{b}\)  =  12

                                   Multiply through by  b .

20 + b2 + 12  =  12b

                                   Combine  20  and  12  to get  32 .

b2 + 32  =  12b

                                   Subtract  12b  from both sides.

b2 - 12b + 32  =  0

                                   Factor the left side.

(b - 4)(b - 8)  =  0

                                   Set each factor equal to zero and solve for  b .

 

b - 4  =  0       or       b - 8  =  0

   b  =  4         or         b  =  8

 

Now let's use these values of  b  to find  a  and  c .

 

If  b = 4  , then   a  =  20 / b  =  20 / 4  =  5

If  b = 4 ,  then   c  =  12 / b  =  12 / 4  =  3

 

So a solution is:   a  = 5 ,   b = 4 ,   and   c = 3

 

If  b = 8  , then   a  =  20 / b  =  20 / 8  =  2.5

If  b = 8 ,  then   c  =  12 / b  =  12 / 8  =  1.5

 

So a solution is:   a  = 2.5 ,   b = 8 ,   and   c = 1.5

hectictar  Aug 31, 2018

19 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.