Compute (1+i)4
Binomial theorem expansion so we have ∑4i=0(4i)⋅1(4−i)ii=1+4i−6−4i+1=−4 ◼
Note that i is additionally the index of the summation.
(1+i)4=( (1+i)2 )2|(1+i)2=1+2i+i2=( 1+2i+i2 )2|i2=−1=( 1+2i−1 )2=(2i)2=4i2|i2=−1=4(−1)=−4
Just as an alternative way to calculate thisz=1+i=√2eiπ/4z4=(√2)4e4(iπ/4)=4eiπ=−4