Binomial theorem expansion so we have \(\sum _{i=0}^4\binom{4}{i}\cdot \:1^{\left(4-i\right)}i^i=1+4i-6-4i+1=\boxed{-4}~~\blacksquare\)
Compute \(\large{\left(1 + i\right)^4}\)
\(\begin{array}{|rcll|} \hline && \mathbf{\left(1 + i\right)^4} \\ &=& \Big(~\left(1 + i\right)^2~\Big)^2 \quad &| \quad \left(1 + i\right)^2 = 1+2i+i^2 \\ &=& \Big(~1+2i+i^2~\Big)^2 \quad &| \quad i^2=-1 \\ &=& \left(~1+2i-1~\right)^2 \\ &=& \left( 2i \right)^2 \\ &=&4i^2\quad &| \quad i^2=-1 \\ &=&4(-1) \\ &=& \mathbf{-4} \\ \hline \end{array}\)