+0  
 
+1
75
8
avatar+539 

What is the largest integer \(n\) for which \(\binom{8}{3} + \binom{8}{4} = \binom{9}{n}\)?

 Dec 8, 2018
 #1
avatar
+2

n = 5

8C3 + 8C4 =9C5

56   +  70   = 126 

 Dec 8, 2018
 #2
avatar+94953 
+2

\(\binom{8}{3} + \binom{8}{4} = \binom{9}{n}\\ LHS\\ =\binom{8}{3} + \binom{8}{4} \\ =\frac{8!}{3!\;5!}+\frac{8!}{4!\;4!}\\ =\frac{9! }{3!\;5!*9}+\frac{9!}{4!\;4!*9}\\ =\frac{9! }{3!\;4!*5*9}+\frac{9!}{3!*4\;*4!*9}\\ =\frac{9!}{3!4!*9}\left( \frac{1}{5}+\frac{1}{4} \right)\\ =\frac{9!}{3!4!*9}\left( \frac{9}{20} \right)\\ =\frac{9!}{3!4!}\left( \frac{1}{4*5} \right)\\ =\frac{9!}{4!5!}\\ =\binom{9}{4}\quad or \quad \binom{9}{5}\)

 

So the largest value of n is 5

 Dec 8, 2018
 #3
avatar+94209 
+2

Nicely done, Melody !!!!

 

 

cool cool cool

CPhill  Dec 8, 2018
 #4
avatar+94953 
+1

Thanks Chris :)

Melody  Dec 8, 2018
 #5
avatar+3715 
+2

There is actually a trick for this! \( {n \choose k} \)+\( {n \choose k+1} \)=\( {n+1 \choose k+1} \), so in this case, we have \( {8 \choose 3} + {8 \choose 4} = {9 \choose 4} \) or \( {9 \choose 5} \). Thus, \(\boxed{n=5}.\)

.
 Dec 8, 2018
 #6
avatar+94953 
+1

Thanks Tertre, I figured that there must be but I am not good at remembering tricks. :/

Melody  Dec 8, 2018
 #7
avatar+3715 
+1

Welcome! I just learned this a few days ago under Pascal's triangle.

tertre  Dec 8, 2018
 #8
avatar+94953 
0

Of course, how silly of me, I should have thought of that!

Melody  Dec 9, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.