+0

# help!

0
240
1

The polynomial \(f(x)\)  has degree 3. If \(f(-1) = 15\)\(f(0)= 0\) ,\(f(1) = -5\) , and \(f(2) = 12\) , then what are the\(x\)  -intercepts of the graph of \(f\)?

Feb 11, 2018

#1
+1

f(-1)  = 15

f(0)  = 0

f(1)  =  -5

f(2)  = 12

A cubic  has the form  ax^3  + bx^2 + cx + d

Since (0,0)  is on the graph, then d  must equal 0

So.....we have this system

-a + b - c  =  15

a + b + c  =  -5

8a + 4b + 2c  = 12

-a + b - c  =  15

a + b + c    = -5      add these and we get that   2b = 10  ⇒ b = 5

And

8a + 5(4) + 2c  = 12

8a + 2c  =  -8   using this  and   -a + b - c  = 15   we have that

8a + 2c  =  -8

-a + 5 - c  = 15

8a + 2c  =  -8    (1)

-a - c   = 10       ⇒  -2a - 2c = 20  (2)     add (1)  and (2)

6a  =  12      ⇒  a  =  2

And using   - a + b - c  = 15

2 + 5 + c  = -5 ⇒   c = - 12

So.... the function is

2x^3  + 5x^2  - 12x   .......to find the x intercepts.....set this to 0

2x^3  + 5x^2 - 12x  =  0      factor

x (2x^2 + 5x - 12)  = 0

x (2x - 3) (x + 4)  = 0

Setting the factors to 0   and solving for x we get that the x intercepts are

x = -4 , x  = 0   and x  =  3/2   = 1.5   Feb 11, 2018