We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
84
1
avatar+1206 

Suppose that a and b are positive integers such that (a-bi)^2 = 8-6i. What is a-bi?

 Apr 14, 2019
 #1
avatar+101870 
+1

(a - bi)^2 =

 

a^2 - 2abi - b^2    =   8 - 6i

 

(a^2 - b^2) = 8     (1)

 

(-2ab)i  = - 6i

2ab i = 6i

ab  = 3      ⇒   b = 3/a      (2)

 

Sub (2) into (1)

 

a^2 - (3/a)^2  = 8

a^2 - 9/a^2  = 8

a^4 - 9  = 8a^2

a^4 - 8a^2 - 9  = 0

(a^2 - 9) (a^2 + 1)   = 0

 

The second factor produces a non-real for a

a^2 - 9  ⇒  a  = 3

And b = 3/a = 3/3  = 1

 

So  (a, b)  = (3, 1)

 

And

 

a - bi  =

 

3  - i

 

 

cool cool cool

 Apr 14, 2019

12 Online Users