+0

# help

0
352
1

Segment $s_1$ has endpoints at $(1,2)$ and $(7,10)$. Segment $s_2$ is obtained by translating $s_1$ by $3$ units to the right and $2$ units down. Find the midpoint of segment $s_2$. Express your answer as $(a,b)$ with $a$ and $b$ integers.

Jun 8, 2019

#1
+3

The endpoints of  s2  are  3  to the right and  2  down from the endpoints of  s1

s1  has endpoints at  (1, 2)  and  (7, 10)

s2  has endpoints at  (1 + 3, 2 - 2)  and  (7 + 3, 10 - 2)

s2  has endpoints at  (4, 0)  and  (10, 8) https://www.desmos.com/calculator/g6yqktgtvp

midpoint of  s2  =  $$\Big( \frac{4+10}{2},\frac{0+8}{2} \Big)\ =\ \Big(\frac{14}{2},\frac82\Big)$$  =  (7, 4)

Jun 8, 2019

#1
+3

The endpoints of  s2  are  3  to the right and  2  down from the endpoints of  s1

s1  has endpoints at  (1, 2)  and  (7, 10)

s2  has endpoints at  (1 + 3, 2 - 2)  and  (7 + 3, 10 - 2)

s2  has endpoints at  (4, 0)  and  (10, 8) https://www.desmos.com/calculator/g6yqktgtvp

midpoint of  s2  =  $$\Big( \frac{4+10}{2},\frac{0+8}{2} \Big)\ =\ \Big(\frac{14}{2},\frac82\Big)$$  =  (7, 4)

hectictar Jun 8, 2019