We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
113
1
avatar+1229 

Segment $s_1$ has endpoints at $(1,2)$ and $(7,10)$. Segment $s_2$ is obtained by translating $s_1$ by $3$ units to the right and $2$ units down. Find the midpoint of segment $s_2$. Express your answer as $(a,b)$ with $a$ and $b$ integers.

 Jun 8, 2019

Best Answer 

 #1
avatar+8759 
+3

The endpoints of  s2  are  3  to the right and  2  down from the endpoints of  s1

 

s1  has endpoints at  (1, 2)  and  (7, 10)

 

s2  has endpoints at  (1 + 3, 2 - 2)  and  (7 + 3, 10 - 2)

 

s2  has endpoints at  (4, 0)  and  (10, 8)

 

https://www.desmos.com/calculator/g6yqktgtvp

 

midpoint of  s2  =  \(\Big( \frac{4+10}{2},\frac{0+8}{2} \Big)\ =\ \Big(\frac{14}{2},\frac82\Big)\)  =  (7, 4)

 Jun 8, 2019
 #1
avatar+8759 
+3
Best Answer

The endpoints of  s2  are  3  to the right and  2  down from the endpoints of  s1

 

s1  has endpoints at  (1, 2)  and  (7, 10)

 

s2  has endpoints at  (1 + 3, 2 - 2)  and  (7 + 3, 10 - 2)

 

s2  has endpoints at  (4, 0)  and  (10, 8)

 

https://www.desmos.com/calculator/g6yqktgtvp

 

midpoint of  s2  =  \(\Big( \frac{4+10}{2},\frac{0+8}{2} \Big)\ =\ \Big(\frac{14}{2},\frac82\Big)\)  =  (7, 4)

hectictar Jun 8, 2019

4 Online Users

avatar