We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
86
1
avatar

In triangle ABC, we have angle BAC = 60 degrees and angle ABC = 45 degrees. The bisector of angle A intersects line BC at point T, and AT = 24. What is the area of triangle ABC?

 Jan 27, 2019
edited by Guest  Jan 27, 2019
 #1
avatar+101103 
+1

          A

 

 

 B                 C

 

 

Angle BAT = 30°

 

And....by the Law of Sines

 

AB / sin ATB =  AT / sin ABC

 

AB / sin 105 =  24 / sin 45

 

AB = 24 sin (105)  / sin 45  =

 

24 sin (60 + 45) / sin 45   =

 

24 [  sin (60)oos(45) /  sin (45)   +  sin (45)cos (60) /sin (45) ]  =

 

24 [ sin (60) +  cos (60)  ]  =

 

24 [ sqrt (3) /2 + 1/2 ]  =

 

12 [ sqrt (3) + 1 ]

 

And using the Law of Sines again

 

AB / sin ACB  = BC / sin BAC

 

12 [ sqrt (3) + 1 ] / sin (75)  = BC / sin (60)

 

12 [ sqrt (3) + 1 ] =  BC sin (75) /sin (60)

 

12 [sqrt (3) + 1 ] * sin (60)   =  BC [ sin(30)cos (45) + sin (45)cos(30) ]

 

6 [ sqrt (3) + 1] * sqrt (3)   = BC  [ (1/2)(sqrt (2) / 2  + (sqrt (2) /2) sqrt (3) /2 ]

 

6 [ sqrt (3) + 1 ] * sqrt (3)  =  BC [ sqrt (2) + sqrt (6) ] / 4

 

 [ 24 [ sqrt (3) + 1] *sqrt (3) ]  / [ sqrt (2) + sqrt (6) ]  =  BC

 

[ 24 (3 + sqrt (3) ] / [ sqrt (2) + sqrt (6) ]  = BC

 

[ 24 (sqrt (3) + 3 ] [ sqrt (6) - sqrt (2) ] / 4 = BC

 

[ 24 (sqrt (18) + 3sqrt (6) - sqrt(6) - 3sqrt (2) ] = BC

 

 6  [ ( 3sqrt (2) + 2sqrt (6) - 3sqrt (2) ]   = BC

 

12 sqrt (6) = BC

 

So...the area of ABC =

 

(1/2)AB * BC * sin (45) =

 

(1/2) [ 12 (sqrt (3) + 1) ] [ 12 sqrt (6) ] sqrt (2) / 2  = 

 

(1/4) (144) (sqrt (3) + 1) (sqrt (12) )  =

 

36 [ sqrt (36) + 2sqrt(3) ]    =

 

36 [ 6 + 2sqrt (3) ] =

 

36 (2 * 3 + 2 sqrt (3) ]  =

 

72 [ 3 + sqrt (3) ]  units^2  ≈  340.7 units^2

 

 

 

cool cool cool

 Jan 27, 2019

12 Online Users

avatar