+0  
 
0
227
1
avatar

In triangle ABC, we have angle BAC = 60 degrees and angle ABC = 45 degrees. The bisector of angle A intersects line BC at point T, and AT = 24. What is the area of triangle ABC?

 Jan 27, 2019
edited by Guest  Jan 27, 2019
 #1
avatar+111326 
+1

          A

 

 

 B                 C

 

 

Angle BAT = 30°

 

And....by the Law of Sines

 

AB / sin ATB =  AT / sin ABC

 

AB / sin 105 =  24 / sin 45

 

AB = 24 sin (105)  / sin 45  =

 

24 sin (60 + 45) / sin 45   =

 

24 [  sin (60)oos(45) /  sin (45)   +  sin (45)cos (60) /sin (45) ]  =

 

24 [ sin (60) +  cos (60)  ]  =

 

24 [ sqrt (3) /2 + 1/2 ]  =

 

12 [ sqrt (3) + 1 ]

 

And using the Law of Sines again

 

AB / sin ACB  = BC / sin BAC

 

12 [ sqrt (3) + 1 ] / sin (75)  = BC / sin (60)

 

12 [ sqrt (3) + 1 ] =  BC sin (75) /sin (60)

 

12 [sqrt (3) + 1 ] * sin (60)   =  BC [ sin(30)cos (45) + sin (45)cos(30) ]

 

6 [ sqrt (3) + 1] * sqrt (3)   = BC  [ (1/2)(sqrt (2) / 2  + (sqrt (2) /2) sqrt (3) /2 ]

 

6 [ sqrt (3) + 1 ] * sqrt (3)  =  BC [ sqrt (2) + sqrt (6) ] / 4

 

 [ 24 [ sqrt (3) + 1] *sqrt (3) ]  / [ sqrt (2) + sqrt (6) ]  =  BC

 

[ 24 (3 + sqrt (3) ] / [ sqrt (2) + sqrt (6) ]  = BC

 

[ 24 (sqrt (3) + 3 ] [ sqrt (6) - sqrt (2) ] / 4 = BC

 

[ 24 (sqrt (18) + 3sqrt (6) - sqrt(6) - 3sqrt (2) ] = BC

 

 6  [ ( 3sqrt (2) + 2sqrt (6) - 3sqrt (2) ]   = BC

 

12 sqrt (6) = BC

 

So...the area of ABC =

 

(1/2)AB * BC * sin (45) =

 

(1/2) [ 12 (sqrt (3) + 1) ] [ 12 sqrt (6) ] sqrt (2) / 2  = 

 

(1/4) (144) (sqrt (3) + 1) (sqrt (12) )  =

 

36 [ sqrt (36) + 2sqrt(3) ]    =

 

36 [ 6 + 2sqrt (3) ] =

 

36 (2 * 3 + 2 sqrt (3) ]  =

 

72 [ 3 + sqrt (3) ]  units^2  ≈  340.7 units^2

 

 

 

cool cool cool

 Jan 27, 2019

24 Online Users

avatar
avatar