We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
109
1
avatar

Given that \(n > 1\), what is the smallest positive integer \(n\) whose positive divisors have a product of \(n^6\)?

 Jan 1, 2019

Best Answer 

 #1
avatar
+1

N=60
1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 (12 divisors)
60 x 30 x 20 x 15 x 12 x 10 x 6 x 5 x 4 x 3 x 2 x 1 =46,656,000,000
                                                                       60^6=46,656,000,000

 Jan 1, 2019
 #1
avatar
+1
Best Answer

N=60
1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 (12 divisors)
60 x 30 x 20 x 15 x 12 x 10 x 6 x 5 x 4 x 3 x 2 x 1 =46,656,000,000
                                                                       60^6=46,656,000,000

Guest Jan 1, 2019

10 Online Users

avatar
avatar