Find constants A, B, and C so that \(\frac{4x}{(x - 5)(x - 3)^2} = \frac{A}{x - 5} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2}\)
\(\dfrac{4x}{(x-5)(x-3)^2} = \dfrac{A(x-3)^2+B(x-5)(x-3)+C(x-3)}{(x-5)(x-3)^2}\)
\(4x = A(x^2-6x+9) + B(x^2-8x+15)+C(x-3)\\ 4x = x^2(A + B) + x(-6A-8B+C)+(9A+15B-3C)\)
\(A+B=0\\ (-6A-8B+C)=4\\ (9A+15B-3C) = 0\)
\(\text{I leave you to solve for }A,B,C\)
.4x A B C
____________ = _______ + _____ + _______
(x - 5)(x - 3)^2 (x - 5) (x - 3) (x - 3)^2
Multiply through by (x - 5) ( x -3)^2
4x = A(x - 3)^2 + B(x- 5)(x - 3) + C(x - 5) simplify
4x = A(x^2 - 6x + 9) + B(x^2 - 8x + 15) + C(x - 5)
4x = (A + B)x^2 + (-6A - 8B + C)x + (9A + 15B - 5C)
Equating coefficients, we have
A + B = 0 ⇒ B = -A (1)
-6A - 8B + C = 4 (2)
9A + 15B - 5C = 0 (3)
Subbing (1) into (2) and (3) we have
-6A + 8A + C = 4 ⇒ 2A + C = 4 ⇒ 6A + 3C = 12 (4)
9A - 15A - 5C = 0 ⇒ -6A - 5C = 0 (5)
Add (4) and (5)
-2C = 12
C = -6
And using (4) to find (4)
6A + 3(-6) = 12
6A - 18 = 12
6A = 30
A = 5
And B = -A = -5
So (A,B,C) = (5, -5, - 6)
Find constants A, B, and C so that
\(\large{\dfrac{4x}{(x - 5)(x - 3)^2} = \dfrac{A}{x - 5} + \dfrac{B}{x - 3} + \dfrac{C}{(x - 3)^2}}\)
\(\begin{array}{|lrcll|} \hline & \dfrac{4x}{(x - 5)(x - 3)^2} &=& \dfrac{A}{x - 5} + \dfrac{B}{x - 3} + \dfrac{C}{(x - 3)^2} \quad | \quad \cdot (x - 5)(x - 3)^2 \\\\ & \mathbf{4x} &\mathbf{=}& \mathbf{A(x - 3)^2 + B(x - 5)(x - 3) + C(x - 5)} \\\\ \hline x=3: & 4\cdot 3 &=& A\cdot 0 + B\cdot 0 + C(3 - 5) \\ & 12 &=& -2C \\ & \mathbf{C} &\mathbf{=}& \mathbf{-6} \\\\ x=5: & 4\cdot 5 &=& A(5 - 3)^2 + B\cdot 0 + C\cdot 0 \\ & 20 &=& A\cdot 2^2 \\ & 20 &=& 4A \\ & \mathbf{A} &\mathbf{=}& \mathbf{5} \\\\ x=0: & 4\cdot 0 &=& 5(0 - 3)^2+B(0 - 5)(0 - 3)-6(0 - 5) \\ & 0 &=& 45 +15B+30 \\ & 15B &=& -75 \\ & \mathbf{B} &\mathbf{=}& \mathbf{-5} \\ \hline \end{array}\)