Find all values of \(t\) such that \( 6t - \frac23 + \frac{t}{5} = 4 + \frac{2-t}{3}\)
\(\frac{6t(15) - 2(5) + t(3)}{15} = \frac{12 + (2-t)}{3}\)
\(\frac{93t - 10}{15} = \frac{14 - t}{3}\)
\(3(93t - 10) = 15(14-t)\)
\(279t - 30 = 210-15t\)
\(294t = 240 \quad \rightarrow \quad \boxed{t = \frac{120}{147}}\)
.