We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
37
2
avatar

The first two positive integers n for which 1 + 2 + ... + n is a perfect square are 1 and 8.  What are the next two?

 Nov 28, 2019
 #1
avatar
+1

a=1;b=1;d=0;c=a+b;d=d+b;e=2#d;printb,e;b++;if(b<300, goto3, 0)


n            Perfect Square
1            1(1)
8            36(6)
49          1,225(35)
288        41,616(204)

 Nov 29, 2019
 #2
avatar+23575 
+2

The first two positive integers \(n\) for which \(1 + 2 + \ldots + n\) is a perfect square are \(1\) and \(8\)

What are the next two?

 

Definition:

\(\text{Triangular numbers: $a(n) = \dbinom{n+1}{2} =\dfrac{ n(n+1)}{2} = 1 + 2 +3+4+ \ldots + n$. }\\\\ 1, 3, 6, 10, 15, 21, 28, 36,\ldots \)

 

\(\text{$a(m)$-th triangular number is a square: $\\\mathbf{a(m+1) = 6*a(m)-a(m-1)+2}$, with $a(1) = 1$, $a(2) = 8$. } \\\\ 1, 8, 49, 288, 1681, 9800, 57121, 332928, \ldots \)

 

Example:

\(\begin{array}{|c|r|r|r|} \hline & a(m+1) & & s_n \\ m+1 & = 6*a(m)-a(m-1)+2 & n & = \dfrac{ n(n+1)}{2} \\ \hline 3 & 6*a(2)-a(1)+2 \\ & = 6*8-1+2 \\ & = 49 & 49 & 35^2 \\\\ \hline 4 & 6*a(3)-a(2)+2 \\ & 6*49-8 +2 \\ & 288 & 288 & 204^2 \\\\ \hline 5 & 6*a(4)-a(3)+2 \\ & 6*288-49 +2 \\ & 1681 & 1681 & 1189^2 \\\\ \hline \ldots \\ \hline \end{array} \)

 

The next two positive integers n are 49 and 288.

 

laugh

 Nov 29, 2019

20 Online Users

avatar
avatar