+0  
 
0
442
3
avatar

Osman kept 720 sweets in three jars. The ratio of the number of sweets in jar A to the number of sweets in jars B and C was 1 : 3. He gave away 4/9 of the sweets in jar A, 30 sweets from Jar B and 60 sweets from jar C. After that, he bought another 50 sweets and kept them in jar C. The ratio of the number of sweets in jar A to the number of sweets in jar B became 1 : 2. How many sweets were there in jar C in the end?

 Aug 12, 2021
 #1
avatar+129850 
+1

A originally  contains  =  1 / ( 1+3) (720)  =   (1/4) ( 720)  =  180

B + C  =  540

C  =  540  -  B

 

And   (4/9) 180  =  80  were given away  from  jar A....so it  now contains  100 sweets

And  B now contains  B  - 30

 

So  we know  that

 

100 /  ( B - 30)  = 1 /2         (cross-multiply)

 

200  =  B  - 30

 

So B originally  contained   230

 

And  C  originally  contained   540  -  230  =   310

And 60  of these were  given away and  50  were  added

So C  finally  contains   310  - 60 + 50  =  300 

 

cool cool cool

 Aug 12, 2021
edited by CPhill  Aug 12, 2021
edited by CPhill  Aug 12, 2021
 #2
avatar
0

--_--

 

--_--

--_--

 

--_--

Guest Aug 12, 2021
 #3
avatar
0

Oh finally you answered 

 Aug 12, 2021

2 Online Users