We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
85
4
avatar+1040 

Let \((x,y)\) be an ordered pair of real numbers that satisfies the equation \(x^2+y^2=14x+48y\). What is the minimum value of x?

 Jul 28, 2019
 #1
avatar+103122 
+1

x^2 + y^2  = 14x + 48y         rearrange as

 

x^2 - 14x  + y^2 - 48y  = 0      complete the square on x and y

 

x^2 -14x + 49 + y^2 - 48y + 576  =  49 + 576        factor  and simplify

 

(x -7)^2  + ( y - 24)^2  =  625

 

This is a circle centered at  ( 7 , 24)   with  a radius of √625  =  25

 

The minimum value  for x  will be :     x coordinate of the center  minus the radius  =

 

7 - 25   =    -18

 

 

cool cool cool

 Jul 28, 2019
 #2
avatar+1040 
+1

Thanks CPhill.

 Jul 28, 2019

7 Online Users