We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
42
4
avatar

Fin the product of all real solutions to \(x^{2 - \log_4(x)} = \pi\)

 Apr 2, 2019

Best Answer 

 #3
avatar+100042 
+1

Fin the product of all real solutions to    \(x^{2 - \log_4(x)} = \pi\)

This turned out to be a really cool question!! 

 

\(x^{2 - \log_4(x)} = \pi\\ log_4[x^{2 - \log_4(x)} ]=log_4[ \pi]\\ (2 - \log_4x) log_4x=log_4 \pi\\ 2log_4x - (\log_4x)^2=log_4 \pi\\ (\log_4x)^2-2(log_4x)+log_4 \pi=0\\ Let A=log_4x\\ A^2-2A+log_4\pi=0\\ A=\frac{2\pm\sqrt{4-4log_4\pi}}{2}\\ A=1\pm\sqrt{1-log_4\pi}\\ sub\; back\;again\\ log_4x=1\pm\sqrt{1-log_4\pi}\\ 4^{log_4x}=4^{1\pm\sqrt{1-log_4\pi}}\\ x=4^{1\pm\sqrt{1-log_4\pi}}\\~\\ \text{So the product of the only two values of x that make this true is}\\ 4^{1+\sqrt{1-log_4\pi}}\times 4^{1-\sqrt{1-log_4\pi}}\\ =4^{1+\sqrt{1-log_4\pi}+1-\sqrt{1-log_4\pi}}\\ =4^2\\ =16 \)

.
 Apr 2, 2019
edited by Melody  Apr 2, 2019
 #1
avatar
+1

Mathematica 11 Home Edition gives the following 2 real values for x with no explanation!!

 

x =2.2425  and   x =7.1348

2.2425 x 7.1348    =~ 16

 Apr 2, 2019
 #2
avatar+100042 
+1

I could not work out anything any more useful either.

Here are the 2 points on the graph

 

 Apr 2, 2019
 #3
avatar+100042 
+1
Best Answer

Fin the product of all real solutions to    \(x^{2 - \log_4(x)} = \pi\)

This turned out to be a really cool question!! 

 

\(x^{2 - \log_4(x)} = \pi\\ log_4[x^{2 - \log_4(x)} ]=log_4[ \pi]\\ (2 - \log_4x) log_4x=log_4 \pi\\ 2log_4x - (\log_4x)^2=log_4 \pi\\ (\log_4x)^2-2(log_4x)+log_4 \pi=0\\ Let A=log_4x\\ A^2-2A+log_4\pi=0\\ A=\frac{2\pm\sqrt{4-4log_4\pi}}{2}\\ A=1\pm\sqrt{1-log_4\pi}\\ sub\; back\;again\\ log_4x=1\pm\sqrt{1-log_4\pi}\\ 4^{log_4x}=4^{1\pm\sqrt{1-log_4\pi}}\\ x=4^{1\pm\sqrt{1-log_4\pi}}\\~\\ \text{So the product of the only two values of x that make this true is}\\ 4^{1+\sqrt{1-log_4\pi}}\times 4^{1-\sqrt{1-log_4\pi}}\\ =4^{1+\sqrt{1-log_4\pi}+1-\sqrt{1-log_4\pi}}\\ =4^2\\ =16 \)

Melody Apr 2, 2019
edited by Melody  Apr 2, 2019
 #4
avatar
+1

Solve for x:
log(x) (2 - log(x)/log(4)) = log(π)

Expand out terms of the left hand side:
2 log(x) - (log^2(x))/log(4) = log(π)

 

Multiply both sides by -log(4):
log^2(x) - 2 log(4) log(x) = -log(4) log(π)

Add log^2(4) to both sides:
log^2(4) - 2 log(4) log(x) + log^2(x) = log^2(4) - log(4) log(π)

 

Write the left hand side as a square:
(log(x) - log(4))^2 = log^2(4) - log(4) log(π)

Take the square root of both sides:
log(x) - log(4) = sqrt(log^2(4) - log(4) log(π)) or log(x) - log(4) = -sqrt(log^2(4) - log(4) log(π))

 

Add log(4) to both sides:
log(x) = log(4) + sqrt(log^2(4) - log(4) log(π)) or log(x) - log(4) = -sqrt(log^2(4) - log(4) log(π))

Cancel logarithms by taking exp of both sides:
x = 4 e^sqrt(log^2(4) - log(4) log(π)) or log(x) - log(4) = -sqrt(log^2(4) - log(4) log(π))

 

Add log(4) to both sides:
x = 4 e^sqrt(log^2(4) - log(4) log(π)) or log(x) = log(4) - sqrt(log(4)^2 - log(4) log(π))

Cancel logarithms by taking exp of both sides:

 

x = 4 e^sqrt(log^2(4) - log(4) log(π))= 2.24253438346688
or x = 4 e^(-sqrt(log^2(4) - log(4) log(π)))= 7.13478469626164
2.24253438346688 x 7.13478469626164 = 16

 Apr 2, 2019
edited by Guest  Apr 2, 2019

3 Online Users