+0  
 
0
144
1
avatar+175 

Two of the altitudes of an acute triangle divide the sides into segments of lengths 5,3,2 and x units, as shown. What is the value of x?

 

Maplesnowy  Apr 26, 2018
 #1
avatar+88899 
+1

We can equate the area of the the triangle on both sides of an equation

 

(1/2)*  (3 + 5) * sqrt [ (x + 2)^2 - 3^2 ]   =  (1/2) (x + 2) * sqrt  [ ( 8^2 - 2^2 ]

 

8 * sqrt [ x^2 + 4x + 4 - 9]  = (x +2 ) sqrt (60) 

 

8 * sqrt [ x^2 + 4x - 5]  = (x+ 2) sqrt (60)          square both sides

 

64 (x^2 + 4x  - 5 ]  =  (x^2 + 4x + 4 ) * 60

 

16(x^2 + 4x - 5)  = 15(x^2 + 4x + 4)

 

16x^2 + 64x - 80  =  15x^2 + 60x + 60

 

x^2 + 4x - 140  = 0       factor

 

(x - 10) ( x + 14)  = 0

 

Setting both factors to 0 and solving for x gives that x  = -14 (reject)  or  

 

x = 10

 

 

 

cool cool cool

CPhill  Apr 26, 2018

29 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.