+0  
 
+1
15
1
avatar+28 

\(Letf(x) = \begin{cases} |\lfloor{x}\rfloor| &\text{if }x\text{ is rational}, \\ \lceil{x}\rceil^2 &\text{if }x\text{ is irrational}. \end{cases} Find f(\sqrt[3]{-8})+f(-\pi)+f(\sqrt{50})+f\left(\frac{9}{2}\right).\)

 Jun 8, 2024
 #1
avatar+129895 
+1

∛-8  = -2   which is rational

l floor ( -2) l  = l -2 l  = 2

 

-pi  is irrational

(ceiling (-pi) )^2  =  (-3)^2  =  9

 

√50  is irrationa;

( ceiling (√50) )^2  = (8)^2  = 64

 

9/2 is rational

 

l floor (9/2) l  =  l 4 l  =  4

 

2 + 9 + 64 + 4  =   79

 

cool cool cool

 Jun 8, 2024

0 Online Users