\(Letf(x) = \begin{cases} |\lfloor{x}\rfloor| &\text{if }x\text{ is rational}, \\ \lceil{x}\rceil^2 &\text{if }x\text{ is irrational}. \end{cases} Find f(\sqrt[3]{-8})+f(-\pi)+f(\sqrt{50})+f\left(\frac{9}{2}\right).\)
∛-8 = -2 which is rational
l floor ( -2) l = l -2 l = 2
-pi is irrational
(ceiling (-pi) )^2 = (-3)^2 = 9
√50 is irrationa;
( ceiling (√50) )^2 = (8)^2 = 64
9/2 is rational
l floor (9/2) l = l 4 l = 4
2 + 9 + 64 + 4 = 79