+0  
 
0
66
2
avatar+50 

express 16x^(4) -96x^(3)y +216x^(2)y^(2) -216xy^(3) +81y^(4) in the form of (ax+by)^n

Bobbly  Jun 15, 2018
 #1
avatar
0

 

16x^(4) -96x^(3)y +216x^(2)y^(2) -216xy^(3) +81y^(4)

=(2x - 3y)^4

Guest Jun 15, 2018
 #2
avatar+92777 
+2

\(16x^4 -96x^3y +216x^2y^2 -216xy^3 +81y^4=(ax+by)^n\\~\\ \text{If we just assume that this is actually possible then the answer is obvious}\\ n=4\\ a^4=16\;\; so\;\; a=\pm2\\ b^4=81\;\; so\;\; b=\pm3\\ \text{If a is positive b is negative and vise versa.}\\ (2x-3y)^4\qquad or \qquad (-2x+3y)^4 \)

 

But if you want to prove it is an identity then you have to go further.

 

\(16x^4 -96x^3y +216x^2y^2 -216xy^3 +81y^4=(ax+by)^n\\~\\ \text{Since the largest power of x and y is 4, }\;n=4\\ (ax+by)^4\\ =(ax)^4+4C1*(ax)^3(by)+4C2*(ax)^2(by)^2+4C3*(ax)^1(by)^3+(by)^4\\ =(ax)^4+4*(ax)^3(by)+6*(ax)^2(by)^2+4*(ax)^1(by)^3+(by)^4\\ a^4=16\quad so\;\;a=\pm2\\ b^4=81\quad so\;\;b=\pm3\\ =16x^4+4*(ax)^3(by)+6*4x^2*9y^2+4*(ax)^1(by)^3+81y^4\\ =16x^4+4a^3bx^3y+216x^2y^2+4ab^3xy^3+81y^4\\ \)

In order to get the negatives, when a is negative then b is positive and vise versa so\(4a^3b=-4*8*3=-96\\ 4ab^3=-4*2*27=-216\\~\\ (2x-3y)^4=16x^4-96x^3y+216x^2y^2-216xy^3+81y^4\\ and\\ (-2x+3y)^4=16x^4-96x^3y+216x^2y^2-216xy^3+81y^4\\\)

Melody  Jun 15, 2018

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.