We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Suppose that \(a\) and \(b\) are integers such that \(3b = 8 - 2a.\)How many of the first six positive integers must be divisors of \(2b + 12 \)?

Guest Oct 14, 2018

#1**+1 **

\(3b=8-2a\\ 2b+12 = \dfrac 23(8-2a)+12=\\ \dfrac{16-4a+36}{3} = \dfrac{52-4a}{3} \\ \text{If I understand the question were are looking for the values of }\\ a \in \{1,2,3,4,5,6\} \text{ such that } \dfrac{52-4a}{3} \in \mathbb{Z}\)

\(\dfrac{52-4a}{3} = 16+\dfrac{4-4a}{3} \text{ so we want values of }a \ni \dfrac{4-4a}{3} \in \mathbb{Z}\\ 4-4a = \{0, -4, -8, -12, -16, -20\}\\ \text{ and the two of those divisible by 3 are 0 and -12} \\ \text{corresponding to }a=1,~a=4\\ \text{ so there are 2 values of a that satisfy the original statement}\)

.Rom Oct 15, 2018

#1**+1 **

Best Answer

\(3b=8-2a\\ 2b+12 = \dfrac 23(8-2a)+12=\\ \dfrac{16-4a+36}{3} = \dfrac{52-4a}{3} \\ \text{If I understand the question were are looking for the values of }\\ a \in \{1,2,3,4,5,6\} \text{ such that } \dfrac{52-4a}{3} \in \mathbb{Z}\)

\(\dfrac{52-4a}{3} = 16+\dfrac{4-4a}{3} \text{ so we want values of }a \ni \dfrac{4-4a}{3} \in \mathbb{Z}\\ 4-4a = \{0, -4, -8, -12, -16, -20\}\\ \text{ and the two of those divisible by 3 are 0 and -12} \\ \text{corresponding to }a=1,~a=4\\ \text{ so there are 2 values of a that satisfy the original statement}\)

Rom Oct 15, 2018