+0  
 
0
37
2
avatar

Find the units digit of n given that \(mn = 21^6\) and m has a units digit of 7.

 
 Jan 7, 2019
 #1
avatar+94209 
+2

mn = 21^6

 

(7 * 3)^6  = 21^6

 

7^6  * 3^6  = 21^6

 

7^5 * 7 * 3^6  = 21^6

 

16807 * 7 *3^6 =  21^6

 

16807 * 5103 = 21^6

 

m = 16807

n = 5103

 

 

cool cool cool

 
 Jan 7, 2019
 #2
avatar+3535 
+2

A bit of a different take on it that doesn't require you actually find the numbers.

 

\(\text{We are looking for }n \pmod{10}\\ m=10a+7\\ 21^6 = (2\cdot 10+1)^6 = \sum \limits_{k=0}^6 \dbinom{6}{k}(2\cdot 10)^k = 1 + 10\cdot (\text{some big number})\\ 21^6 \pmod{10} = 1\\ \)

 

\(mn \pmod{10} = (m \pmod{10})(n \pmod{10})\pmod{10} = 21^6 \pmod{10} = 1\\ m\pmod{10}=7\\ 7(n \pmod{10}) \pmod{10}=1\\ n\pmod{10} = 3 \)

.
 
 Jan 7, 2019

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.