+0  
 
0
375
1
avatar

There are 5 quadratics below. Four of them have two distinct roots each. The other has only one distinct root; find the value of that root.

\begin{align*} &4x^2 +16x - 9\\ &2x^2 + 80x + 400\\ &x^2 - 6x - 9\\ &4x^2 - 12x + 9\\ &{-x^2 + 14x + 49} \end{align*}

Guest Jan 11, 2018
 #1
avatar+88898 
+1

A quadratic will have only one root  when the discriminant, b^2  - 4ac  = 0

 

4x^2 + 16x - 9    ⇒   16^2   - 4(4)(-9)  > 0  

2x^2 + 80x + 400  ⇒    80^2  - 4(2 )( 400) > 0   

x^2 - 6x - 9     ⇒   (-6)^2  - 4(1)(-9)  > 0 

4x^2 - 12x + 9   ⇒   (-12)^2  - 4 (4)(9)  =  0

-x^2 + 14x + 49  ⇒  (14)^2  - 4(-1)(49)  > 0

 

So

 

4x^2  - 12x +  9  =  0  factors as

 

(2x - 3) (2x - 3)  = 0

 

(2x - 3)^2  =  0

 

And this is true when   x  =  3/2

 

 

cool cool cool

CPhill  Jan 11, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.