If f(c)=32c−3, find kn2lm when f−1(c)×c×f(c) equals the simplified fractionkc+lmc+n, where k,l,m, and n are integers.
If
f(c)=32c−3, find kn2lm
when f−1(c)×c×f(c) equals the simplified fraction kc+lmc+n,
where k, l, m, and n are integers.
My attempt:
f(c)=32c−3|c=f−1(c)f(f−1(c))=32f−1(c)−3|f(f−1(c))=cc=32f−1(c)−3c(2f−1(c)−3)=32cf−1(c)−3c=32cf−1(c)=3c+3cf−1(c)=3c+32f−1(c)×c=3c+32
f−1(c)×c×f(c)=(3c+3)2×3(2c−3)f−1(c)×c×f(c)=3(3c+3)2(2c−3)f−1(c)×c×f(c)=9c+94c−6k=9, l=9, m=4, n=−6kn2lm=9(−6)29∗4kn2lm=364kn2lm=9