+0  
 
0
76
4
avatar+160 

There are exactly four positive integers $n$ such that \[\frac{(n + 1)^2}{n + 23}\] is an integer. Compute the largest such $n$.

Rollingblade  Apr 20, 2018
 #1
avatar+866 
+4

Hi Rollingblade!

 

The first step in this problem is to divide the numerator by its denominator. 

 

We have:

 

\(\begin{align*} \frac{(n+1)^2}{n+23} &= \frac{n^2 +2n + 1}{n+23}\\ &= \frac{n^2 + 23n - 21n+1}{n+23}\\ &= \frac{n^2 +23n}{n+23} -\frac{21n}{n+23} + \frac{1}{n+23}\\ &=\frac{n(n+23)}{n+23} - 21\cdot \frac{n+23-23}{n+23}+ \frac{1}{n+23}\\ &=n - 21\left(\frac{n+23}{n+23} - \frac{23}{n+23}\right)+ \frac{1}{n+23}\\ &= n - 21 + \frac{21\cdot 23}{n+23}+ \frac{1}{n+23}\\ &=n-21 + \frac{484}{n+23}. \end{align*} \)

 

This means that n+23 must be a factor of 484 = 2^2 *11^2

 

The largest factor of 484 is 484.

 

So n = 484 - 23 = 461.

 

I hope this helps. 

GYanggg  Apr 20, 2018
 #2
avatar+87293 
+1

Very nice, GYanggg  !!!!!

 

 

cool cool cool

CPhill  Apr 20, 2018
 #3
avatar+866 
+2

Thanks Chris!

 

It's always nice when someone complements your work!

GYanggg  Apr 20, 2018
 #4
avatar+87293 
+2

Here's one more way using polynomial division

 

(n + 1)^2                n^2 + 2n  + 1

_______   =          ___________

  n  +  23                 n  +  23

 

 

 

                  n    -   21

n + 23    [   n^2   +   2n     +   1   ]

                  n^2   +  23n

                 __________________

                             -21n   +    1

                             -21n   -  483

                            ___________

                                          484

 

n -  21    +        484

                     ________

                       n  + 23         

 

 

And note that, as GYanggg found, the largest n that makes the last fraction an integer is when n = 461

 

 

cool cool cool

CPhill  Apr 20, 2018

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.